Real-time kinodynamic planning and dynamic optimization
Yajia Zhang, Jingru Luo, Kris Hauser
Summary
Planning costs cannot be ignored in dynamic, real-time systems. Powerful planners are unresponsive to unexpected changes, but weak planners sacrifice completeness and optimality. Moreover, improper integration can jeopardize robot performance and safety. To address these issues, this research theme investigates faster planners and better system integration architectures. New fast optimization techniques let robots execute motions more quickly while strictly respecting dynamic constraints; moreover, the added computational costs are worth the savings in execution time. New time-stepping architectures are proven to be asymptotically complete in a deterministic environment with changing goals, and experiments suggest improved safety in unpredictably dynamic environments compared to other state-of-the-art techniques. These algorithms have been applied to assisted teleoperation of a 6DOF robot arm, navigation amongst unpredictable moving obstacles, and humanoid robot locomotion.
- K. Hauser and Y. Zhou. Asymptotically Optimal Planning by Feasible Kinodynamic Planning in State-Cost Space. IEEE Transactions of Robotics, 32(6): 1431-1443, 2016. Also in arXiv:1505.04098 [cs.RO], 2015.
- J. Luo and K. Hauser. Robust Trajectory Optimization Under Frictional Contact with Iterative Learning. Robotics: Science and Systems (RSS), July 2015.
- K. Hauser. Lazy Collision Checking in Asymptotically-Optimal Motion Planning. IEEE Intl. Conference on Robotics and Automation (ICRA), May 2015.
- J. Luo and K. Hauser. An Empirical Study of Optimal Motion Planning. IEEE/RSJ Intl. Conference on Intelligent Robots and Systems (IROS), September 2014.
- K. Hauser. Fast Interpolation and Time-Optimization with Contact. International Journal of Robotics Research (IJRR), 33(9):1231-1250, August, 2014. doi: 10.1177/0278364914527855
- K. Hauser. Fast Interpolation and Time-Optimization on Implicit Contact Submanifolds. In proceedings of Robotics: Science and Systems (RSS), Berlin, Germany, June 2013.
- Y. Zhang, J. Luo, and K. Hauser. Sampling-based Motion Planning With Dynamic Intermediate State Objectives: Application to Throwing. In IEEE Int'l Conference on Robotics and Automation (ICRA), Minneapolis, May 2012.
- J. Luo and K. Hauser. Interactive Generation of Dynamically Feasible Robot Trajectories from Sketches Using Temporal Mimicking. In IEEE Int'l Conference on Robotics and Automation (ICRA), Minneapolis, May 2012.
- K. Hauser. On Responsiveness, Safety, and Completeness in Real-Time Motion Planning. Autonomous Robots, 32(1):35-48, 2012.
- K. Hauser. Adaptive Time Stepping in Real-Time Motion Planning. In Workshop on the Algorithmic Foundations of Robotics, Singapore, 2010.
- K. Hauser and V. Ng-Thow-Hing. Fast Smoothing of Manipulator Trajectories using Optimal Bounded-Acceleration Shortcuts. In IEEE Intl. Conf. of Robotics and Automation (ICRA), Anchorage, USA, May 2010.
- Asymptotically Optimal Planning by Feasible Kinodynamic Planning in State-Cost Space (In submission, 2015)
- An Empirical Study of Optimal Motion Planning (IROS 2014)
- Fast Interpolation and Time-Optimization on Implicit Contact Submanifolds (RSS 2013, ICRA 2014, IJRR 2014)
- Interactive Generation of Dynamically Feasible Robot Trajectories from Sketches Using Temporal Mimicking (ICRA 2012)
- On Responsiveness, Safety, and Completeness in Real-Time Motion Planning (WAFR 2010, AutoRob 2011)
Real-time obstacle avoidance with 63 moving obstacles with unpredictable, randomized behavior but bounded velocity. Robot has bounded acceleration. Real-time motion planning with adaptive time-stepping (Adaptive) is compared with constant time-stepping (Cutoff X), and two other methods: reactive potential field (PF) [Ge and Cui, 2001] and velocity obstacles (VO) [Fiorini and Shiller, 1998].
- Manifold Interpolation and Time-Optimal Smoothing (Mintos) library
- Parabolic Path Smoother library