
Randomized Belief-Space Replanning in
Partially-Observable Continuous Spaces

Kris Hauser

School of Informatics and Computing, Indiana University, hauserk@indiana.edu

Abstract: We present a sample-based replanning strategy for driving partially-
observable, high-dimensional robotic systems to a desired goal. At each time step,
it uses forward simulation of randomly-sampled open-loop controls to construct a
belief-space search tree rooted at its current belief state. Then, it executes the action
at the root that leads to the best node in the tree. As a node quality metric we use
Monte Carlo simulation to estimate the likelihood of success under the QMDP belief-
space feedback policy, which encourages the robot to take information-gathering
actions as needed to reach the goal. The technique is demonstrated on target-finding
and localization examples in up to 5D state spacess.

1 Introduction

Many robotics problems involve planning in uncertain, partially-observable
domains, which requires reasoning about how hypothetical state distributions,
belief states, change over time as the robot acts upon the world and gathers in-
formation with its sensors. Although this has been studied heavily in discrete
domains, most realistic robotics problems have continuous, high-dimensional
state spaces with nonlinear dynamics, which places them far out of the reach of
tractability for state-of-the-art planners built for discrete systems. Although
recent techniques have made progress in addressing continuous systems as-
suming Gaussian process and observation noise [3, 19, 21], the more general
case of nonlinear and multi-modal belief states have proven to be much more
challenging, in large part because of the difficulty of representing policies over
an infinite-dimensional belief space [20,22].

We present a Randomized Belief-Space Replanning (RBSR) technique that
addresses an undiscounted and cost-free version of the continuous partially-
observable Markov decision process (POMDP) formulation, where the belief
state must be driven to a goal region. Rather than solving the POMDP once
and using the solution as a lookup table, RBSR repeatedly generates coarse
plans, executes the first step, and uses sensor feedback to refine future plans

2 Kris Hauser

Fig. 1: An execution trace of a robot (large circle) searching for a wandering target
(pink circle) in the unit square. The robot’s sensor has a 0.25 unit range. The current
belief state is represented by 100 particles (dots) and the current plan (orange) is
updated by replanning.

(Figure 1). Much like a receding-horizon controller or model predictive con-
troller, its success rate and computation time depend on the exploration strat-
egy used to generate the search trees, and the evaluation function used to pick
the “best” plan.

The RBSR exploration strategy performs a forward search in belief space
by randomly sampling open-loop actions, and for an evaluation function we
estimate the success rate of a QMDP-like policy. QMDP is a heuristic strategy
that descends the cost-to-go function of the underlying MDP, averaged over
the belief state [16], and it works well when state uncertainty is low, but with
high uncertainty it may fall into local minima because it fails to perform active
information-gathering. Hence, RBSR’s random exploration strategy discour-
ages information loss and encourages information-gathering actions because
they improve the likelihood that QMDP succeeds.

RBSR employs random sampling approaches at multiple points in the pro-
cedure — random belief-space exploration strategies, particle filtering for state
estimation, probabilistic roadmap-like approaches in the QMDP policy eval-
uation, and Monte-Carlo simulation in the evaluation function — making it
highly parallelizable and applicable to high-dimensional spaces. In preliminary
experiments, we applied RBSR to a simulated target pursuit problem with a
4-D state space and localization problems in up to 5-D (Figure 1). In our
tests, RBSR computes each replanning step in seconds, and drives the belief
state to a solution with high probability. Though our current implementation
is promising, it is not as reliable in 6D or higher because it becomes much
more difficult to maintain accurate belief estimates over time. Nevertheless,

Randomized Belief-Space Replanning 3

we anticipate that future implementations of RBSR will be capable of solving
many real-world robotics problems.

2 Related Work

Optimal planning in partially-observable problems is extremely computation-
ally complex and is generally considered intractable even for small discrete
state spaces [17]. Approximate planning in discrete spaces is a field of ac-
tive research, yielding several techniques based on the point-based algorithms
devised by Kearns et al [12] and Pineau et al (2003) [18]. For example, the
SARSOP algorithm developed by Kurniawati et al (2008) has solved problems
with thousands of discrete states in seconds [14].

Hypothetically, these algorithms can be applied to continuous problems by
discretizing the space. But because of the “curse of dimensionality”, any regu-
lar discretization of a high-dimensional space will requires an intractably large
number of states. Porta et al (2006) has made progress in extending point-
based value iteration to the continuous setting by representing belief states as
particles or mixtures of Gaussians [20]. Thrun (2000) presented a technique
that also works with continuous spaces by combining particle filtering with re-
inforcement learning on belief states [22]. For both of these methods, the need
to approximate the value function over the infinite-dimensional belief space
(either using alpha-vector or Q-value representations, respectively) comes at
a high computational and memory expense. We use similar representations,
but because we use replanning to avoid explicit policy representation, our
approach sacrifices near-optimality for reduction in computational expense.

Several recently developed algorithms attempt to address continuous
spaces by leveraging the success of probabilistic roadmaps (PRMs) in motion
planning [11], which build a network of states sampled at random from the con-
figuration space. Alterovitz et al (2007) present a Stochastic Motion Roadmap
planner for continuous spaces with motion uncertainty, which solves an MDP
using the discretization of state space induced by a PRM [1]. The techniques
of Burns and Brock (2007) and Guibas et al (2008) augment roadmaps with
edge costs for motions that have high probability of being in collision, and re-
spectively address the problems of localization errors and environment sensing
errors [4,7]. Huang and Gupta (2009) address planning for manipulators under
base uncertainty by associating probabilistic roadmaps with particles repre-
senting state hypotheses and searching for a short path that is likely to be
collision free [10].

Another set of related approaches use assumptions of Gaussian observation
and process noise, which makes planning much faster because probabilistic in-
ference can be performed in closed form. The Belief Roadmap technique of
Prentice and Roy (2009) computes a roadmap of belief states under both
motion and sensing uncertainty, under the assumptions of Gaussian uncer-
tainty and linear transition and observation functions [21]. van den Berg et al

4 Kris Hauser

State space

a) Current belief state b) Random exploration c) QMDP simulation
 and scoring

d) Best plan taken

Goal
0.6

0.6

0.4
0.20.3

0.5

0.7

0.6

Fig. 2: Illustrating the replanning steps. (a) A belief-space search tree is initialized
with the current belief state. (b) The tree is grown using random exploration of
open-loop motions. (c) Nodes in the tree are scored with estimates of the likelihood
of success under the QMDP policy. Traces of 5 belief-state particles under QMDP
simulation are depicted. (d) The best plan is executed. (If the best node is the root,
QMDP is executed by default).

(2010) consider path planning while optimizing the likelihood that a path is
collision-free, under the assumption that a Linear-Quadratic-Gaussian feed-
back controller is used to follow the path. Platt et al (2010) and du Toit and
Burdick (2010) construct plans using a maximum-likelihood observation as-
sumption, and correcting for observation errors by replanning [6, 19]. RBSR
also uses a replanning strategy, but uses a particle-based uncertainty repre-
sentation that is better at handling nonlinear and multi-modal distributions,
and makes no assumptions on the type of observations received.

The Randomized Path Planner (RPP) was an early approach in path plan-
ning in high-dimensional spaces that uses the principle that reactive policies
often work well when the system is near the goal or when a space is relatively
free of obstacles [2]. RPP plans by alternating steps of potential field descent
and random walks to escape local minima, and was surprisingly effective at
solving path planning problems that were previously considered intractable.
RBSR shares a similar philosophy, but addresses problems with partial ob-
servablility.

3 Problem Definition

RBSR is given a POMDP-like model of the problem as input, and it interleaves
planning and execution steps much like a receding-horizon controller. Each
iteration performs the following steps:

1. The current sensor input is observed, and the robot’s belief state is up-
dated using a particle filter.

2. The planner generates a truncated search tree rooted at the current belief
state. (Figure 2.a–b)

Randomized Belief-Space Replanning 5

3. The robot executes the action associated with the “best” branch out of
the root node. (Figure 2.c–d)

This section describes the POMDP formulation, particle filtering belief state
update, and the QMDP policy that is used to evaluate the quality of nodes
in the tree.

3.1 POMDP Modeling

The problem is formalized as an undiscounted partially-observable Markov
decision process (POMDP) over a set of states S, actions A, and observations
O. S, A, and O are treated as subsets of Cartesian space, although this is not
strictly necessary. A belief state is defined to be a probability distribution over
S. We address the setting where the robot starts at an initial belief state binit

and wishes to reach a goal set G ⊆ S with high probability. We treat obstacles
by moving all colliding states to a special absorbing state. At discrete time
steps the robot performs an action, which changes its (unobserved) state, and
it receives an observation.

Although most POMDP formulations are concerned with optimizing re-
wards and action costs, we treat a somewhat simpler problem of simply maxi-
mizing the probability of reaching the goal. We also do not consider discount-
ing. Discounting is numerically convenient and has a natural interpretation
in economics, but in many respects is inappropriate for robotics problems
because it gives preference to short term rewards.

The dynamics of the system are specified in the transition model T : s, a→
s′ that generates a new state, given an existing state and an action. The sensor
model is specified in the sensor model O : s→ o that generates an observation
given a state. These models are stochastic, and we let the notation s′ ← T (s, a)
and o← O(s) denote sampling at random from the posterior distributions of
T and O, respectively.

3.2 Simulation and Filtering with Belief Particles

To approximate the distribution over state hypotheses, we represent a belief
state b as a weighted set of n particles {(w(1), s(1)), . . . , (w(n), s(n))}, where n
is a parameter, and the weights sum to 1. Using such a representation, we can
easily simulate an observation o ← O(s(k)) by sampling particle (w(k), s(k))
proportional to its weight. We also define functions that compute the successor
belief state after executing action a:

T (b, a) = {(w(i), T (s(i), a))}ni=1 (1)

And the posterior belief state after observing o:

Filter(b, o) = {(1
Z

w(i)Pr(O(s(i)) = o), s(i))}ni=1 (2)

6 Kris Hauser

(a) (b) (c) (d)

Fig. 3: The QMDP policy will succeed for well-localized belief states (a,b), but it
may fall into local minima for a poorly localized belief state (c). On the other hand,
QMDP allows the robot to incorporate new information during execution. So, if it
could sense the corner of the obstacle as a landmark, then QMDP will also reach
the goal (d).

where Z is a normalization factor that ensures weights sum to 1.
We assume the robot performs state estimation using a particle filter,

which have many variants that are beyond the scope of this work. We refer
the reader to the survey in [5] for details. Most of these techniques address
the problem of sample impoverishment that arises when few particles in b
are consistent with a given sequence of observations. For the remainder of
this paper, we will assume that the chosen filter is robust enough to maintain
sufficiently representative belief states.

3.3 QMDP Policy

As an endgame strategy, RBSR uses the incomplete QMDP policy that is quite
successful in practice for highly-localized belief states or when information can
be gathered quickly to localize the state (see Figure 3). QMDP is also used
in RBSR to define a function f(b) that measure the quality of hypothetical
belief states by simulating how well QMDP makes progress toward the goal.

The QMDP policy essentially takes the optimal action assuming full ob-
servability is attained on the next step [16]. Suppose we are given a complete
cost-to-go function Cfo the fully-observable version of the problem. We will
put aside the question of how to compute such a function until Section 3.4,
and currently we describe how to use Cfo to derive a QMDP controller for
the partially-observable belief space.

The belief-space policy πQMDP(b) is defined to descend the expected value
of Cfo over the distribution of states in b. More precisely, we define

C(b) ≡ Es∼b[Cfo(s)] ≈
n∑

i=1

w(i)Cfo(s(i)), (3)

and define πQMDP to pick the action that descends C(b) as quickly as possible:

πQMDP(b) ≡ arg min
a

C(T (b, a)). (4)

Randomized Belief-Space Replanning 7

If the expected value of the resulting belief state does not reduce C(b), we
define πQMDP(b) to return “terminate”. Collision states are assigned infinite
potential. In practice, we compute the arg min in (4) by sampling many actions
and picking the one that minimizes the RHS.

The QMDP policy alternates state estimation and potential field descent
using the following feedback controller:

QMDP
Input: belief state b0.
1. For t = 1, 2, . . ., do:
2. Sense observation ot

3. bo ← Filter(bt−1, ot)
4. at = πQMDP(bo)
5. If at =“terminate,” stop. Otherwise, execute at.
6. bt ← T (bo, at)

QMDP is also used in RBSR to measure quality of future belief states. We
define a belief-state evaluation function f(b) that uses Monte-Carlo simulation
of QMDP on a holdout set of m particles {s(1), . . . s(m)} from b which are
used to simulate “ground truth”. The complement of the holdout set b′ is
used as the initial belief state. For each test sample s(i), QMDP is invoked
from the initial belief state b0 = b′, and s0 = s(i) is used for simulating the
“true” observation O(s(i)) (Line 2). It is also propagated forward along with
the belief state using the transition model st ← T (st−1, at) (Line 6). This
continues until termination.

To enforce an ordering on f(b) (with higher values better), we incorporate
two results of the QMDP simulation: s, the fraction of terminal states st

that lie in the goal G, and c, the average QMDP value function evaluated
at the terminal belief states C(bt). We prioritize success rate s over the value
function c by letting f(b) return a tuple (s,−c). To compare the tuples f(b1) =
(s1,−c1) and f(b2) = (s2,−c2) we use lexicographical order; that is, the value
function is used only break ties on success rate. (This usually occurs when all
locally reachable belief states have zero success rate.)

3.4 Computing Value Functions for the Fully-Observable Problem

Let us now return to the question of how one might provide a potential field
Cfo for the fully-observable version of the input POMDP. The policy that
descends Cfo is assumed to be complete, that is, if state is fully observable,
then a descent of Cfo is guaranteed to reach the goal. Although in discrete
POMDPs such a function can be computed using value iteration on the un-
derlying MDP, the problem is more difficult in continuous POMDPs.

In problems with no motion uncertainty, Cfo is simply a cost function
of the underlying motion planning problem. This can sometimes be com-

8 Kris Hauser

puted analytically; e.g., for a robot with unit bounds on velocity in a con-
vex workspace, Cfo is the straight-line distance to the goal. For more com-
plex problems with high-dimensional or complex state spaces, approximate
methods may be needed. In our examples we use a Probabilistic Roadmap
(PRM) [11] embedded in S, where each point in space is identified with its
closest vertex in the roadmap, and the shortest distance from each vertex to
the goal is computed using Dijkstra’s algorithm. We build the PRM with a
sufficiently large number of samples such that shortest paths in the roadmap
approximate shortest paths in S. By caching the shortest distance for each
PRM vertex, computing Cfo(s) runs in logarithmic time using a K-D tree to
lookup the vertex closest to s.

This PRM-based potential field assumes that velocities can be chosen in
any direction and with unit cost, but can be adapted to handle differentially-
constrained systems using other sample-based motion planners. If actions are
stochastic, a potential based on the Stochastic Motion Roadmap [1] might
yield better results. We leave such extensions to future work.

4 Randomized Belief Space Replanning

The replanning algorithm used by RBSR grows a belief tree T whose nodes
are belief states b ∈ B, and the edges store open-loop actions.

Randomized Belief Space Replanning
Input: Current belief state b0, current plan a1, . . . , at.
1. Initialize T with the belief states in the plan starting from b0.
2. For i = 1, . . . , N , do:
3. Pick a node b in T and an action a.
4. If b′ = T (b, a) is feasible, add b′ to T as a child of b.
5. End
6. Sort the nodes in T in order of decreasing EIG(b).
7. For the M best nodes in T , evaluate f(b).
8. Return the plan leading to the node with the highest f(b).

In Line 3 we use a Voronoi exploration strategy to quickly distribute nodes
across belief space. Lines 6–7 are used to avoid evaluating f on all nodes on
the tree, because it is an relatively expensive operation. We use an expected
information gain score EIG(b) to restrict the evaluations of f to a small subset
of nodes M << N . Because EIG(b) is less expensive than f to compute, this
strategy leads to major speed gains. These strategies are described in greater
detail below.

Randomized Belief-Space Replanning 9

4.1 Voronoi-Biased Exploration Strategy

The exploration strategy is designed to cover the space of reachable open-loop
motions quickly, and we use a Voronoi-biasing strategy much like the Rapidly-
Exploring Random Tree (RRT) motion planner [15]. To expand the tree, we
sample a random target point stgt from the state space S, and sample a set of
representative particles from all belief states in the tree R = {s|b ∈ T, s ∼ b}.
Then, we find the closest point s from R to stgt. We then find a control a
action that brings s closer to stgt.

4.2 Expected Information Gain Scoring Strategy

We use an expected information gain strategy to avoid running expensive
evaluations of f on belief states that are unlikely to yield improvements in
f . The intuition is that information gain is a sort of proxy score for QMDP
favorability because it measures the spread of a belief state distribution, and
QMDP tends to succeed more when states are localized. We compute the
expected information gain for a belief state b as follows. The information gain
of the observation o is the Kullback-Leibler divergence between the posterior
distribution bo ≡ Pr(s|o, b) and the prior b ≡ Pr(s|b):

I(bo||b) =
∫

s∈S

Pr(s|o, b) log
Pr(s|o, b)
Pr(s|b)

. (5)

Given a particle representation of belief states bo and b, we replace the distri-
bution Pr(s|b) using a kernel density estimator with Gaussian kernels centered
on the particles in b, and approximate the integral by the weighted sum over
the particles s(i) in bo.

The expected information gain is simply the expectation of (5) over o:

EIG(b) =
∫

o∈O

Pr(o|b)I(bo||b) (6)

To compute this, we compute the observation o(i) ≡ O(s(i)) for each parti-
cle in b, perform particle filtering bo = Filter(b, o(i)), and then compute the
weighted average of (5) over all particles. Although EIG is an O(n3) com-
putation, in our experiments it is typically orders of magnitude faster than
computing f , and this scoring stage leads to major speedups.

4.3 Complexity and Convergence

The time complexity of RBSR depends on several parameters: the number of
belief space particles n, the number of holdout particles for QMDP simulation
m, the number of exploration steps N , and the number of nodes retained for
QMDP evaluation M . Assume that an evaluation of πQMDP(b) (4) takes time
O(n). Then, the exploration stage takes time O(nN2), the EIG scoring takes

10 Kris Hauser

Fig. 4: Execution traces of the pursuit example for four different initial target loca-
tions (purple circles). The robot uses a distance sensor with maximum range 0.25.

time O(n3N), and the evaluation stage takes time O(TnmM) where T is the
average number of steps taken by QMDP before it terminates. But the running
time of the evaluation stage hides a higher constant factor because it uses
more expensive operations such as state and path collision checking, and in
our experiments it dominates running time. Space complexity is O((n+m)N).

The parameter n affects how accurately RBSP tracks and predicts belief
states using the particle filter, and should be set high enough to attain a
desired accuracy. In our experiments we do a small amount of tuning to find
a reasonable parameter. m affects how accurately RBSP predicts the success
rate of the QMDP policy, and f(b) may be quite noisy for low m. Specifically,
the variance of the success rate estimate p is bounded by p(1− p)/m, and m
should be chosen to achieve a desired accuracy. Parameters N and M affect
the chance that RBSR makes progress toward the goal in a single time step.
We used parameters N = 100 and M = 10 in our experiments.

5 Experimental Results

We performed experiments on two scenarios: a 2D pursuit scenario with a
4D state space, as well as a localization scenario that has tunable dimen-
sion. Although these problems are not difficult to solve using special-purpose
strategies, they pose a challenge for general-purpose planners to solve in a rea-
sonable amount of time and memory. For example, the SARSOP planner [14]
can approximately solve a coarsely discretized version of the pursuit scenario
in a few minutes, but it exhausts our test machine’s 2Gb of memory once the
resolution of the workspace grid exceeds 15x15.

5.1 Pursuit Scenario

Our first set of experiments consider a pursuit scenario in the unit square
where the robot must reach a slower target that moves at random (Figure 1).
The position of the robot is observable and controlled precisely, but it cannot
sense the target outside a circle of radius 0.25. The target’s position is a
uniform distribution in the initial belief state, and the goal condition is to

Randomized Belief-Space Replanning 11

achieve a distance of 0.05 to the target. We tested three sensor models: 1)
a position sensor that reports the target’s x, y position relative to the robot,
2) a direction sensor that reports only direction and not distance, and 3) a
distance sensor that does not report direction.

Using preliminary experiments we tuned the number of particles in the
belief state needed for accurate particle filtering, and found that 100 particles
were sufficient for the position and direction sensor, and 200 particles were
needed for the proximity sensor. So, we used m = 50 particles as a holdout
set, and n = 150 and n = 250, respectively, for the position/direction sensors
and the proximity sensor. In 25 trials on each of these problems, with random
target start states, RBSP never failed to reach the target. Several execution
traces for different initial target positions are drawn in Figure 4. Average path
length is approximately 1.7, which is close to the expected path length com-
puted by SARSOP on a 15 x 15 grid, but is still suboptimal. Each replanning
iteration took about 15 s on average, with standard deviation 1̃0 s.

5.2 Localization Scenario

In our second scenario a robot is in an unknown configuration in a known
d-dimensional environment and must localize itself and reach a small goal by
measuring the distance to obstacles. The sensor has a limited range, which
requires that the robot perform several steps of active sensing before reaching
the goal. The optimal strategy is to proceed toward a wall until the sensor
returns a reading, and then proceed to an adjacent wall until a closer reading
is obtained, and so on until it achieves d readings from d linearly independent
walls. Note that RBSR does not have a “proceed until” action in its action
set, so instead it must approximate such a policy by a sequence of conditional
movement actions and sensing actions.

In the first experiment (Figure 5), we set d = 2, S is the unit square,
the initial belief state is a circular Gaussian distribution with standard de-
viation 0.1, and the goal radius and the sensing radius are both set to 0.05.
To represent belief states we used 150 particles with a holdout set of 50. We
also tested a space containing obstacles (Figure 6). In both examples, RBSR
performs localization by moving close to obstacle boundaries, in somewhat
random fashion, until it senses nearby walls. This continues until sufficient
data is gathered to reach the goal.

We tested the effects of reducing the size of the holdout set m, and what
we found was that the resulting executions tend to be much more noisy due to
spurious noise in f(b). In such cases, we found better results when replanning
is initiated only when the current belief state experiences a large information
gain due to an incoming observation (Figure 7). We hope to explore this
strategy further in future work.

Our final set of experiments tested scalability with respect to dimension.
Figure 8 plots the number of replanning steps taken by RBSR in problems
from d = 3 to d = 5 in the unit hypercube. We increased the number of

12 Kris Hauser

Fig. 5: An execution trace of a robot localizing itself to reach the red circle with high
probability. Its sensor measures the distance to the walls, and has maximum range
0.05 (dashed lines). The current belief state is represented by 100 particles (dots)
with a covariance ellipsoid, and the current plan (orange) is updated by replanning.

particles to 500, but kept all other parameters unchanged from the experiment
in Figure 5. These experiments suggest that the number of replanning steps
is roughly linear in dimension. Running time per timestep is roughly linear
in dimension as well, ranging from approximately 6 s in the 3D case up to
approximately 14 s in the 5D case. In higher dimensions, the accuracy of the
particle filter dropped off sharply. In future work we hope to explore more
sophisticated belief state representations, like Gaussian mixture models, that
can maintain accuracy with a manageable number of particles.

Randomized Belief-Space Replanning 13

Fig. 6: A robot localizing itself using a proximity sensor in a space with obstacles.

6 Discussion: Exploration Strategies

The experiments above are preliminary but promising, and in future work we
would like to study RBSR’s theoretical performance in the face of approximate
belief states and randomization in the exploration strategy. In this section we
argue why we expect that RBSR will work well in a broader class of problems;
particularly those in which 1) random walks in belief space have a significant
probability of finding useful information, and 2) in the process of information-
gathering, uncertainty is not significantly increased.

Under these assumptions, RBSR is roughly a belief-space analogue to the
Randomized Path Planner (RPP) [2], which addresses path planning in a de-
terministic, fully-observable environment by alternating potential field descent
with random walks to escape local minima. RBSR is, however, better than
RPP for two reasons: 1) it perform many walks in simulation only and then
picks the best one for execution, and 2) it performs many walks in parallel us-
ing the Voronoi bias heuristic, which is more efficient at exploring belief space

14 Kris Hauser

Fig. 7: Left: a partial localization execution using only 5 holdout particles. Because
the evaluation function is noisy, the plan is often drastically revised and the walls
have not yet been sensed after 30 steps. Right: by initiating replanning only when
information gain exceeds a threshold, the path is smoother and two walls have been
sensed within 30 steps.

0

20

40

60

80

100

120

140

160

3 4 5

St
ep

s

Dimension

Fig. 8: In localization problems up to 5 dimensions the number of replanning steps
scales roughly linearly. Columns report average, minimum, and maximum steps over
10 trials.

than a random walk. So, we should be able to show that RBSR performs at
least as well as RPP, which is probabilistically complete.

Another interpretation is that RBSR uses macro-actions to make plan-
ning more efficient. The idea of macro-actions have existed for some time in
the discrete POMDP literature as a way to reduce the exploration breadth
and depth in large robotics problems [16]. For example, Hsiao et. al. ad-
dressed a robot grasping problem using specially constructed macro-actions
that either provide information or seek the goal [9]. They demonstrate that
if uncertainty grows slowly during information-gathering, then forward plan-
ning can be limited to depth one. RBSR can also be interpreted as depth-one
forward planning, using the QMDP policy as a goal-seeking macro-action
and belief-space sampling to produce information-gathering macro-actions on
the fly. Two other recent works have also tackled the problem of construct-
ing macro-actions automatically and with increasing granularity during for-
ward planning [8, 13]. These approaches are limited to macro-actions that

Randomized Belief-Space Replanning 15

reach various states as subgoals, and we suspect that RBSR constructs better
information-gathering macro-actions using belief space criteria; on the other
hand we also suspect that the approaches in [8, 13] construct more optimal
plans by searching to a greater depth. (Note that our current presentation
of RBSR does not incorporate action costs; future implementations may in-
corporate path cost during the selection of information-gathering paths.) It
remains an open question whether these varied approaches will yield problem-
independent principles for generating and exploiting macro-actions in both
discrete and continuous POMDPs.

7 Conclusion

This paper presented preliminary work in a Randomized Belief-Space Replan-
ning (RBSR) technique for partially-observable problems in continuous state
spaces. It constructs partial plans by sampling open-loop actions at random,
and by evaluating the quality of future belief states by simulating a QMDP-like
policy that performs well when the state is well-localized. By iteratively incor-
porating sensor feedback from plan execution and replanning, RBSR avoids
having to compute a policy over large belief spaces. Experiments show that
it solves a target pursuit problem with a 4D state space and a localization
problem in 2D–5D state spaces relatively efficiently.

We argued informally that RBSR works well given certain assumptions on
the problem space, and future work should attempt to formally characterize
convergence rates and compare RBSR to established techniques for discrete
POMDPs. Future benchmark development for partially observable continuous
problems would aid the empirical study of planner sensitivity to dimension-
ality and other belief space properties. We also intend to address improving
path optimality and using sensing more efficiently in the RBSR framework,
because randomization yields somewhat jerky plans. With additional refine-
ments, RBSR-like approaches may lead to breakthroughs in planning under
partial observability in realistic robotic systems.

References

1. R. Alterovitz, T. Simeon, and K. Goldberg. The stochastic motion roadmap: A
sampling framework for planning with markov motion uncertainty. In Robotics:
Science and Systems, June 2007.

2. J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed rep-
resentation approach. Int. J. Rob. Res., 10(6):628–649, 1991.

3. J. V. D. Berg, P. Abbeel, and K. Goldberg. Lqg-mp: Optimized path planning
for robots with motion uncertainty and imperfect state information. In Proc.
Robotics: Science and Systems, 2010.

4. B. Burns and O. Brock. Sampling-based motion planning with sensing uncer-
tainty. In Proc. IEEE Int. Conf. on Robotics and Automation, 2007.

16 Kris Hauser

5. A. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo sampling
methods for bayesian filtering. Statistics and Computing, 10(3):197–208, 2000.

6. N. du Toit and J. Burdick. Robotic motion planning in dynamic, cluttered,
uncertain environments. In IEEE Int. Conf. on Robotics and Automation, 2010.

7. L. J. Guibas, D. Hsu, H. Kurniawati, and E. Rehman. Bounded uncertainty
roadmaps for path planning. In Workshop on the Algorithmic Foundations of
Robotics, Guanajuato, Mexico, 2008.

8. R. He, E. Brunskill, and N. Roy. Puma: Planning under uncertainty with macro-
actions. In Proc. Twenty-Fourth Conf. on Artificial Intelligence (AAAI), 2010.

9. K. Hsiao, T. Lozano-Perez, and L. P. Kaelbling. Robust belief-based execution
of manipulation programs. In Eighth International Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2008.

10. Y. Huang and K. Gupta. Collision-probability constrained prm for a manipu-
lator with base pose uncertainty. In Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 1426–1432, Piscataway, NJ, USA, 2009. IEEE Press.

11. L. E. Kavraki, P. Svetska, J.-C. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. Robot. and Autom., 12(4):566–580, 1996.

12. M. Kearns, Y. Mansour, and A. Y. Ng. Approximate planning in large pomdps
via reusable trajectories. In Advances in Neural Information Processing Systems
12. MIT Press, 2000.

13. H. Kurniawati, Y. Du, D. Hsu, and W. Lee. Motion planning under uncertainty
for robotic tasks with long time horizons. In Proc. Int. Symp. on Robotics
Research, 2009.

14. H. Kurniawati, D. Hsu, , and W. Lee. Sarsop: Efficient point-based pomdp
planning by approximating optimally reachable belief spaces. In Proc. Robotics:
Science and Systems, 2008.

15. S. M. LaValle and J. J. Kuffner, Jr. Rapidly-exploring random trees: progress
and prospects. In WAFR, 2000.

16. M. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for par-
tially observable environments: Scaling up. In Proc. 12th Int. Conf. on Machine
Learning, pages 362–370. Morgan Kaufmann, 1995.

17. M. L. Littman, J. Goldsmith, and M. Mundhenk. The computational complexity
of probabilistic planning. In Journal of Artificial Intelligence Research, volume 9,
pages 1–36, 1998.

18. J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime al-
gorithm for pomdps. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 1025–1032, Acapulco, Mexico, Aug 2003.

19. R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez. Belief space planning
assuming maximum likelihood observations. In Proc. Robotics: Science and
Systems, 2010.

20. J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart. Point-based value
iteration for continuous pomdps. J. of Machine Learning Research, 7:2329–
2367, 2006.

21. S. Prentice and N. Roy. The Belief Roadmap: Efficient Planning in Belief Space
by Factoring the Covariance. The International Journal of Robotics Research,
28(11-12):1448–1465, 2009.

22. S. Thrun. Monte carlo pomdps. In Advances in Neural Information Processing
Systems 12 (NIPS-1999), page 10641070. MIT Press, 2000.

