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Abstract: The motion planning problems encountered in manipulation and legged
locomotion have a distinctive multi-modal structure, where the space of feasible
configurations consists of overlapping submanifolds of non-uniform dimensionality.
These spaces do not possess expansiveness, a property that characterizes whether
planning queries can be solved with traditional sample-based planners. We present
a new sample-based multi-modal planning algorithm and analyze its completeness
properties. In particular, it converges quickly when each mode is expansive relative
to the submanifold in which it is embedded. We also present a variant that has the
same convergence properties, but works better for problems with a large number of
modes. These algorithms are demonstrated in a legged locomotion planner.

1 Introduction

Probabilistic roadmap (PRM) planners (Chapter 7 of [4]) are state-of-the-
art approaches for motion planning in high-dimensional configuration spaces
under geometrically complex feasibility constraints. They approximate the
connectivity of the feasible set F using a network of randomly sampled con-
figurations connected by straight line paths. It is widely known that PRMs
can be slow when F has poor expansiveness [11], or, informally, contains
“narrow passages” [9]. In certain non-expansive spaces, where F consists of
overlapping submanifolds of varying dimensionality, the narrow passages are
arbitrarily thin, and PRMs do not work at all.

This type of multi-modal structure characterizes a range of motion plan-
ning problems found in manipulation and legged locomotion. Here, each sub-
manifold in F is identified by a mode, a set of fixed contact points maintained
between the robot and its environment. The planner then chooses a discrete
sequence of modes (a sequence of contacts to make and break), as well as con-
tinuous single-mode paths through them (the joint space motions to achieve
those changes of contacts).

In problems where each mode is low-dimensional, such as planar manipu-
lation of multiple objects [1, 15], the primary challenge lies in the combinato-
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rial complexity of mode sequencing. But in problems with high-dimensional
modes, the geometric complexity of single-mode planning poses an additional
challenge. Complete planning is intractable, so PRMs are often used for single-
mode planning. This approach has solved several specific problems in manipu-
lation with grasps and regrasps [14, 16] and legged locomotion [2, 8]. But what
happens to the overall planner’s reliability when it is based on a large number
of unreliable single-mode PRM queries (thousands or more)? PRMs cannot
report that no path exists, so when a single-mode query fails, we cannot tell
if the query is truly infeasible, the goal configuration was picked badly, or the
PRM planner just needed more time. So far, little attention has been paid to
the theoretical performance guarantees of these algorithms when applied to
general multi-modal problems.

This paper presents Multi-Modal-PRM, a general-purpose multi-modal
planning algorithm for problems with a finite number of modes, and inves-
tigates its theoretical completeness properties. Multi-Modal-PRM builds
a PRM across modes by sampling configurations in F and in the transitions
between modes. We prove that, like PRMs, Multi-Modal-PRM will even-
tually find a feasible path if one exists, and convergence is fast as long as each
mode is favorably expansive when restricted to its embedded submanifold.

We also present a more practical variant, Incremental-MMPRM, which
searches for a small candidate subset of modes which are likely to contain
a solution path, and then restricts Multi-Modal-PRM to these modes.
Incremental-MMPRM has the same asymptotic completeness properties
as Multi-Modal-PRM, but can be substantially faster for problems with a
large number of modes (which is common). We demonstrate the application
of Incremental-MMPRM in a legged locomotion planner [8], showing that
it is indeed reliable.

2 Multi-Modal Planning

This section defines multi-modal problems, explains how to use PRMs in
single- and multi-modal planning, and summarizes the pitfalls that have made
many existing planners incomplete.

2.1 PRMs and Non-Expansive Spaces

PRM planners approximate the connectivity of F , the feasible subset of a
robot’s configuration space, using a roadmap of configurations (referred to as
milestones) connected by simple paths (usually straight-lines). The concept
of expansiveness was introduced to characterize how quickly a roadmap con-
verges to an accurate representation [11]. So this paper can be self-contained,
we review the basic algorithm and its properties in the Appendix.

Formally, F is expansive if there exist constants ε, α, β > 0 such that
F is (ε, α, β)-expansive (see Appendix). Otherwise, F is non-expansive. In
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Fig. 1: (a) A non-expansive, multi-modal feasible space F . (b) F can be decomposed
into three modes that are individually expansive.

all expansive spaces, the probability that a PRM fails to solve a planning
query decreases to zero exponentially as the roadmap grows. However, the
convergence rate can become arbitrarily slow as ε, α, and β approach zero.
An expansive space is poorly expansive (i.e., ε, α, and β are low) if it contains
narrow passages. However, a smoothed analysis shows that narrow passages
are unstable with respect to small perturbations of the input geometry, and
are therefore unlikely to occur (except by design) [3].

By contrast, some non-expansive spaces do not exist by chance, but rather
for structural reasons. If F contains a cusp, it is non-expansive, but PRMs
might still work well everywhere away from the cusp, since removing a tiny
regions around the cusp makes F expansive without changing its connectivity.
But if F contains regions of varying dimensionality, then PRM planners have
probability zero of answering most queries. For example, F may consist of
2D regions connected by 1D curves (Figure 1a). In these spaces, the PRM
convergence bounds take the meaningless value of 1.

Varying dimensionality is inherent in the structure of multi-modal prob-
lems. In these problems, the submanifolds that form F can be enumerated
from the problem definition, e.g., by considering all possible combinations of
contacts. However, their number may be huge.

2.2 Multi-Modal Problem Definition

The robotic system moves between a finite set of modes, Σ. Each mode σ ∈ Σ
is assigned a mode-specific feasible space Fσ, and F =

⋃
σ∈Σ Fσ (Figure 1b).

The feasibility constraints of a mode are divided into two classes.

• Dimensionality-reducing constraints, often represented as functional equal-
ities Cσ(q) = 0. Define the submanifold Cσ as the set of configurations that
satisfy these constraints.

• Volume-reducing constraints, often represented as inequalities Dσ(q) > 0.
These may cause Fσ to be empty. Otherwise, Fσ has the same dimension
as Cσ but lower volume (Figure 2a).
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Fig. 2: (a) At a mode σ, motion is constrained to a subset Fσ of a submanifold Cσ

with lower dimension than C. (b) To move from configuration q at stance σ to q′′ at
an adjacent stance σ′, the motion must pass through a transition configuration q′.

For example, in legged locomotion, σ is a fixed set of footfalls. F can be
embedded in a configuration space C, which consists of parameters for a free-
floating robot base and the robot’s joint angles. Enforcing contact at the
footfalls imposes multiple closed-loop kinematic constraints, and these in turn
define Cσ (a submanifold of uniform lower dimension, except at singularities).
Collision avoidance and stability constraints are volume-reducing, and restrict
Fσ to a subset of Cσ.

2.3 Planning Between Two Modes

PRMs can be used for single-mode planning restricted to Cσ. This requires
adapting configuration sampling and path segment feasibility testing to the
submanifold, since the sampler must have nonzero probability of generating
a configuration in Fσ, and a path segment on Cσ may not be a straight line.
Two approaches are parameterizing Cσ with an atlas of charts [5], or using nu-
merical methods to move configurations from the ambient space onto Cσ [13].
PRM planners will plan quickly as long as Fσ is expansive (restricted to Cσ).

Suppose the robotic system is at configuration q at mode σ. To switch to
σ′, we must plan a path in Fσ that ends in a configuration q′ in Fσ∩Fσ′ (Fig-
ure 2b). The region Fσ∩Fσ′ is called the transition between σ and σ′, and q′ is
called a transition configuration. Transitions are at least as constrained as σ or
σ′ because they must simultaneously satisfy the constraints of both stances.
Hence, they often have zero volume relative to Cσ or Cσ′ . Thus, transition
configurations should be sampled explicitly from Cσ ∩ Cσ′ . Like single-mode
sampling, transition sampling can be addressed using explicit parameteriza-
tion or numerical techniques [6].

The existence of q′ is a necessary condition for a single-mode path to
connect q and σ′, and is also a good indication that a feasible path exists.
Sampling q′ is also typically faster than planning a single-mode path. These
two observations are instrumental in the implementation of Incremental-
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MMPRM. But the existence of q′ is not sufficient for a path to exist, because
q and q′ might lie in different connected components of Fσ.

2.4 Planning in Multiple Modes

Because PRMs usually work well for single-mode planning, multi-modal plan-
ning is usually addressed by combining several single-mode plans into a multi-
modal plan. Given a discrete set of modes {σ1, . . . , σm}, a multi-modal planner
explores a mode graph G. Each vertex in G represents a mode, and an edge
connects each pair of adjacent modes. We assume we are given a cheap com-
putational adjacency test, which tests a necessary condition for the existence
of a path moving between any pair of modes σ and σ′. For example, an ad-
jacency test in legged locomotion tests whether σ′ adds exactly one footfall
within the reach of σ. The test should prune out as many unnecessary edges
as possible to help reduce the size of G.

Because G tends to be extremely large, one natural strategy explores only
a small part of G. For example, a search-like algorithm incrementally builds
a tree T of configurations reachable from the start. T is initialized to qstart.
Each expansion step picks a configuration q at mode σ in T , enumerates each
adjacent mode σ′, then uses a PRM to plan a feasible single-mode path from
q to a transition configuration q′ in Fσ ∩ Fσ′ . If successful, q′ is added to T .
This repeats until the goal is reached, and the single-mode paths leading to
the goal are concatenated into a multi-modal path.

2.5 Completeness Challenges in Multi-Modal Planning

Special challenges arise when combining several single-mode PRM queries to
solve a multi-modal problem. Multi-Modal-PRM addresses the following
issues, any of which may cause a planner to fail to find a path.

Because any single-mode query might be infeasible, PRM planners must
be terminated with failure after some cutoff time. Set the cutoff too low,
and the planner may miss critical paths; too high, and the planner wastes
time on infeasible queries. Prior work has usually just tried to avoid infeasible
queries [2, 6, 12], allowing the cutoff to be set high. Another approach avoids
cutoffs by interleaving computation among queries [6, 15, 14].

Because transitions Fσ∩Fσ′ may have zero volume in Fσ or Fσ′ , transition
configurations should be sampled explicitly from Cσ ∩Cσ′ . Furthermore, more
than one configuration q′ may need to be sampled in each transition Fσ∩Fσ′ ,
because a configuration may lie in a component that is disconnected in F
from the start configuration q, or one that is disconnected in F ′ from a target
configuration q′′.

3 Multi-Modal-PRM

This section presents the general Multi-Modal-PRM algorithm, and gives
an overview of its theoretical completeness properties.
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3.1 Algorithm

Multi-Modal-PRM builds PRMs across all modes, connecting them at ex-
plicitly sampled transition configurations (Figure 3). Suppose there are m
modes, Σ = {σ1, . . . , σm}. For each σi ∈ Σ maintain a roadmap Rσi

of Fσi
.

Define the sampler Sample-Mode(σi) as follows. Uniformly sample a con-
figuration q from Cσi . If q is in Fσi , q is returned; if not, Sample-Mode
returns failure. Similarly, define Sample-Trans(σi, σj) to rejection sample
from Fσi ∩ Fσj . Multi-Modal-PRM is defined as follows:

Multi-Modal-PRM(qstart, qgoal, N)
Add qstart and qgoal as milestones to the roadmaps corresponding to their
modes (σstart and σgoal).
Repeat N times:

1. For each mode σi, sample a configuration q using Sample-Mode(σi). If
it succeeds, add q to Rσi as a new milestone, and connect it to existing
milestones.

2. For each pair of adjacent modes σi and σj , sample a configuration q using
Sample-Trans(σi, σj). If it succeeds, add q to Rσi and Rσj , and connect
it to all visible milestones in Rσi Rσj .

Build an aggregate roadmap R by connecting roadmaps at matching transi-
tion configurations.
If qstart and qgoal are connected by a path in R, terminate with success. Oth-
erwise, return failure.

3.2 Summary of Theoretical Results

Section 4 proves that, under certain conditions, the probability that Multi-
Modal-PRM is incorrect (returns failure when a feasible path actually exists)
is less than ce−dN , where c and d are positive constants and N is the number
of iterations. This means that as more time is spent planning, the probability
of failure decreases quickly to zero. The constants c and d do not explicitly
depend on the dimensionality of the configuration space, or the total number
of modes. Furthermore, since a constant number of samples (m + n, where n
is the number of adjacencies) are drawn per iteration, Multi-Modal-PRM
also converges exponentially in the total number of samples drawn.

This bound holds if the following conditions are met:

1. The set of modes Σ = {σ1, . . . , σm} is finite.
2. If Fσi is nonempty, then it is expansive.
3. If Fσi is nonempty, Sample-Mode(σi) succeeds with nonzero probability.
4. If Fσi ∩Fσj is nonempty, Sample-Trans(σi, σj) samples each connected

component of Fσi ∩ Fσj with nonzero probability.
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Fig. 3: Illustrating Multi-Modal-PRM on an abstract example problem. (a) A
mode graph with nine modes, with adjacent modes connected by lines. (b) The
transition regions, with arrows indicating how they map between modes. (c) Building
roadmaps. Light dots are milestones sampled from modes, dark ones are sampled
from transitions. (d) The aggregate roadmap. Transition configurations connected
by dashed lines are identified.

4 Proof of Completeness Properties

This section proves that Multi-Modal-PRM is probabilistically complete
and exponentially convergent in the number of iterations. The proof shows
that three processes exponentially converge: 1) Basic-PRM under rejection
sampling; 2) roadmaps connecting transition components; and 3) roadmaps
along any sequence of modes which contains a feasible multi-step path.

4.1 Exponential Convergence

We say a process is exponentially convergent in N if the probability of failure is
less than ae−bN for positive constants a and b. A useful composition principle
allows us to avoid stating the coefficients a and b, which become cumbersome.
If two quantities are subject to exponentially decreasing upper bounds, their
sums and products are themselves subject to exponentially decreasing bounds.
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The product is trivial, and a1e
−b1N + a2e

−b2N is upper bounded by ae−bN

for a = (a1 + a2) and b = max b1, b2. So if two processes are exponentially
convergent in N , then the probability that both of them succeed, or either
one succeeds, also converges exponentially in N .

4.2 PRMs converge under rejection sampling

The first lemma states that PRMs converge exponentially, not just in the
number of milestones (as was proven in [11]), but also in the number of rejec-
tion samples drawn. Let p be the probability that a random sample from C
lies in F . From N configurations randomly sampled from C, let the milestones
M be those that are feasible.

Lemma 1. If F is expansive and p > 0, a roadmap R constructed from M
connects two query configurations q1 and q2 with probability exponentially con-
vergent in N .

Proof. Since the configuration samples are independent, the size of M is bino-
mially distributed. Hoeffding’s inequality gives an upper bound to the prob-
ability that M has n or fewer milestones:

Pr(|M| ≤ n) ≤ exp(−2(Np− n)2/N).

If |M| ≤ n, the probability of failure is at most 1. On the other hand, if
|M| > n, the probability that R fails to connect q1 and q2 is less than ce−dn,
where c and d are the constants in Theorem 2 (see Appendix). Since these
events are mutually exclusive, have the overall probability of failure ν

ν ≤Pr(|M| ≤ n) · 1 + Pr(|M| > n)c exp(−dn)

≤ exp(−Np2/2) + c exp(−Ndp/2)
(1)

where we have set n = pN/2. Using the composition principle, this bound is
exponentially decreasing in N as desired.

4.3 Convergence of paths connecting transition components

Here we consider the probability of finding a path in F between arbitrary
connected subsets A and B, by building a roadmap using N rejection samples
in A, B, and F .

Let M and p be defined as in Lemma 1. Suppose we rejection sample A
and B respectively by drawing samples uniformly from supersets A′ and B′,
with probability of success pA and pB . From N configurations sampled from
A′, let the milestones MA be the configurations in A. Define MB similarly.

Lemma 2. Suppose F is expansive, and p, pA, and pB are nonzero. Let R
be the roadmap constructed from all milestones M, MA, and MB. If A and
B are in the same connected component in F , then the probability that R
contains a path between A and B is exponentially convergent in N .
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Proof. View any pair of milestones qA in MA and qB in MB as PRM query
configurations. Then R contains a path between A and B when (event X)
MA is nonempty, (event Y ) MB is nonempty, and (event Z) the roadmap
formed from M connects qA and qB .

The probability that N rejection samples from A′ fails to find a milestone
in A is at most (1− pA)N ≤ e−NpA . So event X is exponentially convergent.
The same holds for Y by symmetry. Finally, event Z is exponentially con-
vergent in N by Lemma 1 and since qA and qB are in the same connected
component. The lemma holds by composition of X, Y , and Z.

4.4 Convergence of Multi-Modal-PRM

Lemma 3. Let the assumptions at the end of Section 3 hold. Between any
two configurations, if any feasible multi-step path exists, there is some feasible
path that makes a finite number of mode switches.

Proof. Expansiveness implies ε-goodness, which implies that each connected
component of the feasible space has volume at least ε > 0. Let ε0 be such that
each mode is ε0-good. Then, each mode can only contain 1/ε0 components,
with m/ε0 components overall.

Theorem 1. Let the assumptions at the end of Section 3 hold. If qs and
qg can be connected with a feasible multi-step path, then the probability that
Multi-Modal-PRM finds a path is exponentially convergent in the number
of iterations N .

Proof. If qs and qg can be connected with a feasible path, there is a feasible
path with a finite number of mode switches. Let y(t) be such a path. Suppose
the path travels through mode σk, starting at transition connected component
T1 and ending at T2. Sample-Mode and Sample-Trans have properties
allowing Lemma 2 to be applied to roadmap Rσk

. Therefore, the probability
thatRσk

connects T1 and T2 exponentially converges to 1. The theorem follows
from repeating this argument for all modes along the path, and using the
composition principle.

Dimensionality and the total number of modes m do not explicitly affect
the coefficients in the convergence bound (although the total cost per iter-
ation is at least linear in m). The modes’ expansiveness measures and the
parameters p and p′ have a straightforward effect on the convergence rate:
when expansiveness or the parameters increase, the bound moves closer to
zero. The bound also moves closer to zero if fewer modes are needed to reach
the goal, or if the goal can be reached via multiple paths.

5 An Incremental Variant

Even executing a few iterations of Multi-Modal-PRM is impractical if the
number of modes is large. Typical legged locomotion queries have over a bil-
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lion modes, but only tens or hundreds of steps are needed to go anywhere
within the range of visual sensing. The Incremental-MMPRM variant uses
heuristics to produce a small subset of modes that are likely to contain a path
to the goal. Limiting planning to these modes make planning much faster.
But heuristics are not always right, so Incremental-MMPRM is designed
to gracefully degrade back to Multi-Modal-PRM if necessary.

5.1 Overview

Incremental-MMPRM alternates between refinement and expansion. At
each round r, it restricts itself to building roadmaps over a candidate set of
modes Σr. We set Σ0 to the empty set, and all single-mode roadmaps (except
the start and goal) are initially empty. It repeats the following for rounds
r = 1, . . . , N :

1. Expansion. Add new modes to Σr−1 to produce the next candidate mode
set Σr.

2. Refinement. Incrementally build roadmaps in Σr by performing nr mode
and transition samples (e.g., one iteration of Multi-Modal-PRM).

The performance of Incremental-MMPRM depends mainly on the ex-
pansion heuristic. The heuristic does not affect asymptotic convergence, as
long as the candidate mode set grows until it cannot expand any further (at
which point Incremental-MMPRM behaves exactly like Multi-Modal-
PRM). But practically, it has a large impact on running time. The heuristic
below can be applied to any multi-modal planning problem, and improves
running time by orders of magnitude.

5.2 Expansion: Search Among Feasible Transitions

For some systems, any set of modes leading to the goal (such as those found
with heuristic search) could be a reasonable choice of candidate modes. But
in many systems, most modes and transitions are infeasible, so this approach
would cause the planner to waste most of its time building roadmaps in infea-
sible modes. If the expansion step produces candidate modes that are likely
to contain a feasible path, overall planning speed will be improved, even if
expansion incurs additional computational expense.

Search among feasible transitions (SAFT) uses the existence of a feasible
transition as a good indication that a feasible path exists as well (as in [2]).
SAFT incrementally builds a mode graph G, but without expanding an edge
until it samples a feasible transition configuration. To avoid missing transi-
tions with low volume, SAFT interleaves transition sampling between modes
(as in [6]). It maintains a list A of “active” transitions. Each transition T
in A has an associated priority p(T ), which decreased as more time is spent
sampling T . The full algorithm is as follows:
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SAFT-Init (performed only once at round 0)
Add the start mode σstart to G. Initialize A to contain all transitions out of
σstart.

SAFT-Expand(r) (used on expansion round r)
Repeat the following:

1. Remove a transition T from A with maximum priority. Suppose T is a
transition from σ to σ′. Try to sample a configuration in Fσ ∩ Fσ′ .

2. On failure, reduce the priority p(T ) and reinsert T into A.
3. On success, add σ′ to the mode graph G. For each transitions T ′ out of

σ′, add T ′ to A with initial priority p(T ′).

Repeat until G contains a sequence of modes (not already existing in Σr−1)
connecting σstart to σgoal. Add these modes to Σr−1 to produce Σr.

As in [6], SAFT-Expand may find paths more quickly if the initial p(T )
estimates the probability that T is nonempty. Other heuristics, such as a bias
toward easier steps, could also be incorporated into p(T ) [8].

5.3 Refinement: Strategies to Improve Connectivity

The running time of Incremental-MMPRM is also substantially affected
by the refinement strategy. First, if the sample count parameter nr is too
high, the planner might waste time on a candidate set of modes that contains
no feasible path; too low, and the planner will expand the candidate mode
set unnecessarily. We set nr proportional to the number of modes, with some
minor tuning of the proportionality constant.

Second, given a fixed nr, the planner should allocate single-mode planning
computations to maximize its chance of finding a feasible path. If a mode’s
roadmap is already highly connected, then more samples are unlikely to im-
prove connectivity, so we bias sampling toward modes with poorly connected
roadmaps. Furthermore, if the aggregate roadmap R already contains paths
connecting two modes separated by σ, additional planning in σ is unlikely
to improve connectivity. Thus, we bias sampling toward modes that could
potentially connect large components of R.

Also, rather than use Basic-PRM for single-mode planning, we use the
SBL variant, which is much faster in practice [17]. SBL grows trees rooted
from transition configurations, and delays checking the feasibility of straight
line paths.

6 Experiments in a Legged Locomotion Planner

These algorithms are compared in a legged locomotion planner designed for
rocky, steep terrain, and applied to NASA’s ATHLETE robot, a six-legged



12 Kris Hauser and Jean-Claude Latombe

Fig. 4: Three terrains for testing the locomotion planner.

lunar vehicle with 36 revolute joints. See [8] for details of the problem specifi-
cations and implementation. In previous work, we used a two stage algorithm
that worked well for a four-limbed robot [2] and a bipedal robot [7]. The al-
gorithm is, essentially, Incremental-MMPRM with a different refinement
stage. Using a SAFT-like method, the first (exploration-like) stage produces
a sequence of footsteps to take, and transition configurations for each step.
The second (refinement-like) stage plans single-mode paths to connect the
transition configurations. On ATHLETE, this second stage fails often even on
seemingly simple problems, greatly increasing the number of times that the
planner returns to exploration. This is costly, since each exploration usually
takes several minutes. Here, we test how Incremental-MMPRM improves
reliability of the refinement stage, assuming a good candidate set of modes
has already been provided.

We used the three test terrains of Figure 4: flat ground (Flat), a smoothly
undulating terrain (Hills), and a stair step with a height of 0.5 times the diam-
eter of ATHLETE’s chassis (Step). In each terrain, the planner first samples
several hundred candidate footfalls on the terrain surface. Each mode σ is
defined as a fixed set of simultaneously reached footfalls. SAFT was called
once to find a sequence of modes Σ1 reaching the goal, where each subsequent
mode adds or removes a footfall. We compare three refinement methods: 1)
sampling one feasible configuration in each transition, and calling SBL to con-
nect them with single-mode paths (Single trans); 2) the basic Multi-Modal-
PRM algorithm (I-MMPRM-Basic); and 3) Multi-Modal-PRM using the
connection strategy outlined in Section 5.3 (I-MMPRM-Connect). We tested
each method 10 times on identical Σ1 but with different random seeds, and
terminating the planner if no path was found after 30,000 total samples.

Table 1 reports the results. The single-transition method fails in every case.
The methods based on Multi-Modal-PRM successfully find a path within
the iteration limit nearly every time. I-MMPRM-Connect is faster than I-
MMPRM-Basic, especially when the steps have varying degrees of difficulty.
On flat ground, Σ1 contained one particularly difficult step (depicted in Fig-
ure 4), and hence I-MMPRM-Connect was over four times faster.

The failure of the single-transition method is consistent with the explana-
tion that, by accident, transition configurations were sampled in disconnected
components, which of course cannot be connected with single-mode paths.
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Problem Method % successful Time (s)

Flat
Single trans 0% 501 (88.3)
I-MMPRM-Basic 90% 409 (180)
I-MMPRM-Connect 100% 106 (36.6)

Hills
Single trans 0% 149 (29.5)
I-MMPRM-Basic 100% 181 (103)
I-MMPRM-Connect 100% 99.5 (28.3)

Step
Single trans 0% 258 (36.9)
I-MMPRM-Basic 100% 507 (197)
I-MMPRM-Connect 100% 347 (138)

Table 1: Locomotion planning statistics on various problems with a fixed mode
sequence, averaged over 10 runs. Standard deviations in parentheses.

The Multi-Modal-PRM-based methods succeed by sampling multiple con-
figurations in each transition (typically around 10 before finding a solution).

In similar experiments with a bipedal humanoid robot [7], the single-
transition method worked fairly consistently, with an 80-90% success rate.
The methods based on Multi-Modal-PRM were again consistently success-
ful, but needed very few configurations per transition (typically 1 or 2 before
finding a solution). This modest reliability increase came at a moderate com-
putational overhead; I-MMPRM-Connect averaged about twice as long as
Single-Trans at finding a feasible path.

7 Conclusion

This paper presented Multi-Modal-PRM, a new sample-based multi-modal
planning algorithm for problems with a finite number of modes. We proved
that Multi-Modal-PRM has probability of failure exponentially converging
to 0 in the number of samples drawn, if the feasible space of each mode is
expansive relative to its embedded submanifold. We also presented a variant,
Incremental-MMPRM, that restricts planning to an incrementally growing
set of candidate modes, and is orders of magnitude faster in problems with a
large number of modes. We demonstrated the reliability of these techniques
in experiments in a locomotion planner.

When applied to the ATHLETE six-legged robot, Multi-Modal-PRM
dramatically improves the planner’s reliability over a simpler incomplete
method. When applied to a humanoid biped, Multi-Modal-PRM modestly
improves reliability with moderate overhead. These results suggest that dis-
connected feasible spaces occurred more frequently in ATHLETE than in the
biped. Future work might aim to discover the causes of this phenomenon. We
suspect characteristics of ATHLETE’s kinematics (e.g., singularities) or its
larger number of legs in contact might be contributing factors.

Most systems with contact are posed as having a continuous (uncountably
infinite) number of modes, which are then discretized for planning [8, 15, 16].
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The completeness results in this paper hold only if the set of discretized modes
contains a solution path. If no such path exists, the modes may have been
discretized poorly. In future work, we hope to investigate the completeness and
convergence rate of multi-modal planners that sample modes from continuous
sets of modes.

Appendix: Probabilistic Roadmaps and Expansiveness

This appendix reviews the basic PRM algorithm and its theoretical complete-
ness properties in expansive spaces.

A.1 Basic Algorithm

PRM planners address the problem of connecting two configurations qstart

and qgoal in the feasible space F , a subset of configuration space C. Though
it is prohibitively expensive to compute an exact representation of F , feasi-
bility tests are usually cheap. So to approximate the connectivity of F , PRM
planners build a roadmap R, a network of feasible configurations (called mile-
stones) connected with straight-line segments. A basic algorithm operates as
follows:

Basic-PRM(qstart, qgoal, n)
Add qstart and qgoal to R as milestones.
Repeat n times:

1. Sample a configuration q uniformly from C, and test its feasibility. Repeat
until a feasible sample is found.

2. Add q to R as a new milestone. Connect it to nearby milestones q′ in R
if the line segment between q and q′ lies in F .

If R contains a path between qstart and qgoal, return the path.
Otherwise, return ‘failure’.

If
a PRM planner produces a path successfully, the path is guaranteed to be fea-
sible, but if it fails, then we cannot tell whether no path exists or the cutoff
n was set too low.

A.2 Performance in Expansive Spaces

Basic-PRM and several variants have been shown to be probabilistically
complete, that is, the probability of incorrectly returning failure approaches
0 as n increases. One particularly strong completeness theorem proves that
PRMs converge exponentially, given that F is expansive [11].

The notion of expansiveness expresses the difficulty of constructing a
roadmap that captures the connectivity of F . The success of PRMs in high
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Fig. 5: A poorly expansive space. (a) The visibility set V(q) in region S2, of a point
q in S1. (b) Lookoutβ(S1) is the set of points that see at least a β fraction of S2.

dimensional spaces is partially explained by the fact that expansiveness is not
explicitly dependent on the dimensionality of F . Let µ(S) measure the vol-
ume of any subset S ⊆ F (with µ(F) finite), and let V(q) be the set of all
points that can be connected to q with a straight line in F . The lookout set
of a subset S of F is defined as the subset of S that can “see” a substantial
portion of the complement of S (see Figure 5). Formally, given a constant
β ∈ (0, 1] and a subset S of a connected component F ′ in F , define

Lookoutβ(S) = {q ∈ S | µ(V(q) \ S) ≥ βµ(F ′ \ S)}

For constants ε, α, β ∈ (0, 1], F is said to be (ε, α, β)-expansive if:

1. For all q ∈ F , µ(V(q)) ≥ εµ(F).
2. For any connected subset S, µ(Lookoutβ(S)) ≥ αµ(S).

The first property is known as ε-goodness, and states that each configuration
“sees” a significant fraction of F . The second property can be interpreted as
follows. View S as the visibility set of a single roadmap component R′. Let
F ′ be the component of feasible space in which S lies. Then, with significant
probability (at least αµ(S)), a random configuration will simultaneously con-
nect to R′ and significantly reduce the fraction of F ′ not visible to R′ (by at
least β).

The primary convergence result of [11] can be restated as follows:

Theorem 2. If F is (ε, α, β)-expansive, then the probability that a roadmap
of n uniformly, independently sampled milestones fails to connect qstart and
qgoal is no more than ce−dn for some positive constants c and d.

The constants c and d are simple functions of ε, α, and β. If F is favorably
expansive (ε, α, and β are high), the bound is close to zero, and Basic-PRM
will find a path between qstart and qgoal relatively quickly. If, on the other
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hand, F is poorly expansive (ε, α, and β are low), then PRM performance
might be poor for certain query configurations qstart and qgoal. A comple-
mentary theorem proven in [10] states that a PRM planner will succeed with
arbitrarily low probability for any fixed n in spaces with small α and β.
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rithms. In K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, editors,
Alg. Found. Rob., pages 109–125. A K Peters, Wellesley, MA, 1995.

2. T. Bretl, S. Lall, J.-C. Latombe, and S. Rock. Multi-step motion planning for
free-climbing robots. In WAFR, Zeist, Netherlands, 2004.

3. S. Chaudhuri and V. Koltun. Smoothed analysis of probabilistic roadmaps. In
Fourth SIAM Conf. of Analytic Algorithms and Comp. Geometry, 2007.

4. H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementa-
tions. MIT Press, 2005.
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