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Abstract— This paper discusses recent analyses of the shape
of motion spaces for legged robots in quasistatic equilibrium
at a given set of contacts. Two robots were examined: HRP-
2, a biologically inspired humanoid designed by AIST Japan,
and ATHLETE, a six-legged, non-biologically inspired robot
designed by NASA. Probabilistic roadmap techniques are used
to compute the approximate connectivity of several hundred
motion spaces. Results suggest that motion spaces for HRP-
2 are connected, while those of ATHLETE are frequently
disconnected. This signifies that when planning long-range
locomotion, HRP-2 only needs to reason about its footsteps,
while ATHLETE must reason about its pose as well. This makes
planning much more difficult for ATHLETE, a claim that is
supported by experience both in human teleoperation and in
motion planning algorithms. If similar findings hold for other
biological mechanisms, then it can be argued that evolution
has selected for mechanisms that minimize the cognitive load
needed for locomotion, which could form the foundation of a
strong argument for biologically-inspired design.

I. INTRODUCTION

The motion of a robot or biological system can be
represented as a trajectory in a continuous motion space,
whose shape is determined by certain operational constraints
(e.g. maintaining balance, avoiding collision). The geometric
complexity of a system’s motion space is directly related to
the amount of information needed for it to locomote. For
example, a fish in open water or an insect flying in air have
simple, relatively unconstrained motion spaces that permit
free movement in any direction. By contrast, a creature with
a complex motion space must use more sophisticated motion
strategies, which necessitates more sophisticated develop-
ment in cognition, perception, and reflexes. Likewise, robots
with complex motion spaces require more sophisticated
planning, sensing, and control strategies.

This paper hypothesizes that natural organisms have
simple motion spaces. Evolution may select for organism
morphologies that induce simple motion spaces, because
they will need fewer cognitive resources. Furthermore, such
spaces may also be found in robots inspired by nature, which
would provide a strong argument for biologically-inspired
robot design.

This paper specifically considers the connectivity of mo-
tion spaces encountered by legged robots. Singly-connected
spaces are easier to reason about than disconnected spaces.
If a space is singly connected, then the robot only needs
to test if the endpoint is feasible: if so, then some path is
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Fig. 1. The (a) HRP-2 humanoid robot and the (a) ATHLETE six-legged
lunar robot investigated in this study.

guaranteed to exist. If a motion space is multiply connected,
the robot must also test whether a feasible path exists.

This work addresses two robot platforms, the biologically-
inspired humanoid HRP-2, and the non-biologically-inspired
six-legged robot ATHLETE (Figure 1). Prior experience
suggested that it is more difficult to operate ATHLETE in
unstructured environments than HRP-2, either under human
teleoperation or with the use of motion planning algorithms.
One possible explanation is that ATHLETE encounters dis-
connected motion spaces more often than HRP-2. To test this
hypothesis, we study the motion space of each robot when
its contacts against the terrain are fixed. The motion space is
defined as the set of configurations such that the robot does
not collide with itself or the environment, and can stand with
quasistatic equilibrium.

Fixed-contact motion spaces are significant for legged
robots in the following way. If they are singly-connected,
then the robot can plan multi-step locomotion by finding
a sequence of feasible foot placements. This requires ad-
vance reasoning in the 3D space of foot placements and
orientations. On the other hand, if the spaces are multiply-
connected, then it must reason about foot placements and
configurations. If the robot makes an incorrect pose when
taking step A, then it may be unable to take step B, while a
different pose would have enabled taking step B. This pitfall
can be extrapolated so that the required lookahead is arbi-
trarily large. Thus, the presence of multiply-connected spaces
necessitates reasoning in a space with 3+d dimensions, where
d is the number of degrees-of-freedom of the system.

The experiments in this paper use probabilistic roadmap
techniques to approximate motion space connectivity. Exper-



iments over a wide range of terrains suggest that ATHLETE
may encounter disconnected spaces often, even on flat ter-
rain. All tested motion spaces for HRP-2 are connected. In
future work we hope to perform further experiments on a
larger set of robots, to examine whether the hypothesis holds
for other biological and biologically-inspired systems. We
also hope to better understand the properties of mechanisms
that affect connectivity, in order to assist in robot design.

II. LEGGED ROBOT PLATFORMS

HRP-2 (Humanoid Robotics Platform), developed by
AIST Japan, is a 1.5 m tall, 58 kg bipedal humanoid
robot [10]. It has six joints in each of its arms and legs,
two joints in its waist, and two joints in its neck. Its human-
like form was designed for use in human environments like
homes, offices, and construction sites.

ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Ex-
plorer) is a large, 850 kg, six-legged lunar vehicle developed
by NASA’s Jet Propulsion Laboratory [12]. Each of the six
legs is nearly 2 m long and has six revolute joints, ending
in a wheel. On irregular or steep terrain, the wheels may
be braked so it can walk like a standard legged robot. Its
legs were designed primarily for mechanical considerations,
in particular, to fold compactly into the chassis and to have
conveniently computed inverse kinematic solutions.

In prior work, we developed a motion planner for HRP-2
that worked well in practice for a wide variety of terrains,
including rough terrain, ladders, and large stair steps [5].
This planner implicitly assumes that fixed-contact motion
spaces are likely to be connected. To our surprise, the same
planner failed quite often for ATHLETE, even on flat terrain.
We suspected disconnected motion spaces to be the culprit,
which led us to develop more sophisticated and far more
reliable planning techniques that account for disconnected
spaces [8].

Anecdotal reports from field trials also suggest that it
is difficult for humans to teleoperate ATHLETE to walk
over even slightly uneven terrain. The non-human form of
ATHLETE may be nonintuitive to operate, but we also
suspect that disconnected spaces significantly contribute to
the difficulty. If humans are used to operating in connected
spaces, then they will find reasoning about ATHLETE’s
motion to be very challenging.

III. MOTION SPACES

The motion of a robot is a trajectory in the high dimen-
sional configuration space C. A configuration q is described
by 6 parameters for the position and orientation of the
chassis, and a parameter for each joint angle (resulting in
34 parameters for HRP-2 and 42 for ATHLETE). We will
study the set of configurations at which the robot can stand
stably, and support itself against gravity at fixed footfalls.

A. Motion Spaces at a Fixed Stance

Let σ be a fixed set of footfalls, which we call a stance.
Here a footfall refers simultaneously to the foot that is placed
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Fig. 2. At a mode σ, motion is constrained to a subset Fσ of a submanifold
Cσ with lower dimension than C.

on the terrain as well as the location at which it is placed
(and may also refer to hand contacts for HRP-2).

The feasible space Fσ ⊂ C is defined as the set of con-
figurations that satisfy the following feasibility conditions,
which will be described in more detail in Section IV-C:

1) Contact. The robot makes contact with the terrain at
the stance σ.

2) Collision. The robot does not collide with itself or the
environment, except at the specified contacts in σ.

3) Equilibrium. The robot is under quasistatic equilib-
rium, that is, there exists a set of joint torques and
forces at the footfalls in σ that exactly counteracts
gravity and keeps the robot still. Known friction is
assumed at each contact.

Under these conditions, Fσ has a geometrically complex
shape. The contact condition imposes one or more closed
chain constraints, and restricts Fσ to lie on a lower dimen-
sional submanifold Cσ of C (as illustrated in Figure 2). The
collision and stability conditions reduce the volume, but not
the dimensionality of Fσ .

B. Multi-Step Motions

Suppose the robot stands with configuration q at a fixed
stance σ, and considers taking a step to place a new footfall
f against the environment. The robot will arrive at the stance
σ′ = σ ∪ {f}. So, the robot must move along a path within
Fσ between q and some transition configuration q′ ∈ Fσ ∩
Fσ′ . The same condition must be achieved if the robot wishes
to remove a footfall f to reach the stance σ′ = σ \ {f}.

The transition region Fσ ∩Fσ′ is an important bottleneck
in legged locomotion. It consists of configurations where the
robot touches the footfall at f but can stand without applying
any force at f . Thus, it is more constrained than either of
Fσ or Fσ′ .

C. The Role of Feasible Space Connectivity

Figure 4 illustrates some of the pitfalls associated with
multiply-connected feasible spaces Fσ . In particular, if
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Fig. 3. To move from configuration q at stance σ to q′′ at an adjacent
stance σ′, the motion must pass through a transition configuration q′.

spaces are known to be singly connected, one can infer the
existence of a feasible path from σ to σ′ as long as the
transition Fσ ∩ Fσ′ is non-empty. Thus, step feasibility is a
function of stance only.

On the other hand, this conclusion cannot be drawn
if multiply-connected spaces exist. Rather, the robot pose
affects whether it can take a future step, because it may
currently lie in the wrong connected component. Correcting
this situation requires backtracking to a different stance and
returning to stance σ at a different pose. Intuitively, it would
seem that humans and other legged creatures rarely need to
execute such maneuvers.

IV. COMPUTING APPROXIMATE CONNECTIVITY WITH
ROADMAPS

Exact queries on Fσ , such as querying the number of
connected components, or querying whether two points are
connected, are very difficult to compute for robots with many
degrees of freedom. But the feasibility conditions can be
tested quickly for points and curves in C, which means
that probabilistic roadmap techniques can be employed ef-
ficiently. We use these roadmaps to compute approximate
properties of Fσ .

A. Overview of Probabilistic Roadmaps

Probabilistic roadmaps (PRMs) are state-of-the-art tech-
niques for motion planning in high-dimensional configu-
ration spaces (see Chapter 7 of [2]). They approximate
the shape of a feasible space using a roadmap, which is
a network of configurations sampled at random from the
feasible set (called milestones), and each pair of milestones
is connected with an edge if a path segment between them
(typically taken to be a straight line) is also feasible.

A PRM planner requires implementations of three sub-
routines: configuration sampling, configuration feasibility
testing, and path segment feasibility testing. The implemen-
tations we use for legged robot feasible spaces are described
below. Further details can be found in [7].
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Fig. 4. If the feasible spaces of two stances σ and σ′ do not intersect, there
is no feasible motion from q1 to q2. If Fσ and Fσ′ are both connected and
intersect, then a feasible path definitively exists. If they intersect, but Fσ

is multiply-connected, then a feasible path may or may not exist. If Fσ′ is
multiply-connected, then a motion that takes q1 to Fσ′ may end up in the
wrong component of Fσ′ .

B. Configuration Sampling

To sample configurations in Fσ we rejection sample
by generating a configuration q in C, solving an inverse
kinematics (IK) problem so that the robot meets the footfalls
in Cσ , then rejecting the configuration if it is infeasible (with
the tests described in the following section). The IK step
is necessary because a random sample from C has zero
probability of satisfying the contact constraints.

To solve the IK problem, we first use analytic IK routines
that solve for a subset of joint angles that minimize the robot-
contact distance, and then use a numerical Newton-Raphson
IK solver that optimizes over all joint variables [7]. Ex-
periments suggest that this generates feasible configurations
faster than either the analytic or numerical approaches alone.
The rejection rate can also be decreased by incorporating the
collision and equilibrium constraints as inequality constraints
in the Newton-Raphson solver, as described in [6], and by
sampling initial configurations from C with a smarter dis-
tribution, such as in [3], [7]. Overall, feasible configurations
can be generated approximately at the rate of one every 10 ms
– 1 s on a 2 GHz PC, depending on the stance.

C. Configuration Feasibility Tests

Testing for contact uses a simple forward kinematics
computation. To efficiently test for collision, we use the
Proximity Query Package (PQP), which uses techniques
based on bounding volume hierarchies [4].



Fig. 5. Deforming a straight line path onto a submanifold. The path is
recursively bisected until a tolerance is reached.

Now consider the equilibrium condition. On flat ground,
this latter condition is nearly equivalent to 1) checking if the
center of mass over the convex hull of the footfalls and 2)
checking torque limits. On uneven ground, the conditions
become significantly more complex, because contact and
frictional forces must counteract each other as well as gravity.
As a first approximation, the robot can be considered a rigid
object with all joints fixed. If there are no valid contact
forces that keep the rigid object stable, then the robot cannot
be either. Given the force of gravity, and a polyhedral
approximation to the friction cone, the equilibrium condition
for rigid objects can be tested efficiently using a linear pro-
gram [1]. A more refined stability test does not treat the robot
as a rigid object, and considers the robot’s bounded joint
torques. This test also involves solving a linear program [6]
and can be computed efficiently.

D. Path Segment Feasibility Tests

We use a recursive bisection technique to check the
feasibility of straight-line paths between milestones q1 and
q2. The midpoint qmid between q1 and q2 has the highest
probability of being infeasible, so it should be tested first.
However, a straight-line path will not, in general, lie in
Cσ . Instead, we simultaneously deform the path onto Cσ

and check its feasibility, as follows (Figure 5). Apply the
Newton-Raphson method to the midpoint of q1 and q2 to
produce qmid on Cσ . Then test if qmid lies in Fσ . If both
steps succeed, recurse on both of the segments until a desired
resolution ε has been reached; otherwise, the checker returns
failure.

This method may still miss collisions that occur below
the ε threshold. For our purposes, we consider it sufficient
to take a small ε. If exact feasibility is desired, there exist
bound-checking techniques that guaranteed exact checking
of path segments [11].

Fig. 6. The three test terrains: Flat, Hills, and Stair.

E. Approximating Connectivity

Although PRMs are typically used for point-to-point mo-
tion planning, here we will use them to approximate the
connectivity of feasible spaces. There are several theoreti-
cal results that state that the connectivity of a PRM will
converge to the connectivity of the feasible space as more
configurations are sampled. For example, it the feasible
space satisfies an expansiveness condition (believed to widely
hold in practice), then the probability that two points are
connected in the space but not in the roadmap decreases
exponentially to 0 as more configurations are sampled [9].

In the following experiments, we approximate the con-
nectivity of Fσ , by building a PRM Rσ of at least 1,000
configurations in Fσ . This is done by sampling 10,000
configurations at random, testing their feasibility, and adding
feasible configurations as milestones in Rσ . The procedure
is repeated until Rσ contains at least 1,000 milestones. Once
this is complete, the path segments between all pairs of
milestones are tested for feasibility, and are added to Rσ

if feasible. In our experiments, the computation time for the
overall procedure ranged between approximately 1 and 10
minutes per space.

We approximate the true connectivity N(σ) of Fσ with
the estimate N̂(σ) that counts the number of large connected
components in Rσ . We exclude small, spurious components
that contain less than 1% of total milestones, which usu-
ally become aggregated into larger components when more
samples are added. Errors in the estimate N̂(σ) occur when
Fσ contains either tiny components or narrow passages,
which are unstable features that are likely to disappear upon
perturbation. Since these types of features are unstable, they
are unlikely to be significantly utilized during motion and
hence N̂(σ) is a reasonable approximation.

V. EXPERIMENTAL RESULTS

Our experiments studied the feasible spaces of each robot
platform on more than 100 stances drawn from three varied
environments. These are depicted in Figure 6: flat ground
(Flat), undulating terrain (Hills), and a stair-step (Stair).
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Fig. 7. Sizes of the ten largest connected components of the disconnected
spaces in the Stair example.

We selected only stances with nonempty feasible spaces, as
verified using random sampling.

For HRP-2, we found that each space consists of a single
component. By contrast, 7/34, 9/46, and 13/37 feasible
spaces for ATHLETE on the Flat, Hills, and Stair examples,
respectively, have multiple components. Of those, more than
half have three or more components. Figure 7 plots the
component sizes for each disconnected space for the Stair
example.

Upon further inspection, we found that each pair of
components can usually be separated in a single joint —
that is, there exists a joint k and a value θ such that all
configurations q in one component have qk < θ and those
in the other component have qk > θ, where qk is the kth
joint angle of q. The joint is typically one of the two joints
closest to the ground in a support leg. At this stage we do
not have a clear explanation why this is the case.

VI. CONCLUSION

This paper presented a connectivity analysis of the fixed-
contact motion spaces of two legged robots. Probabilistic
roadmap techniques were used to approximate the connec-
tivity of motion spaces under collision and quasistatic equi-
librium constraints. From over 100 motion spaces tested over
three simulated environments, all spaces for the humanoid
robot HRP-2 were connected. In contrast, approximately
25% of the spaces for the non-biologically-inspired ATH-
LETE robot were disconnected. These results provide prelim-
inary evidence for the hypothesis that biological organisms
have evolved simple motion spaces, and these spaces are
inherited by biologically-inspired robots.

Future work will perform further experiments on addi-
tional legged robots and organisms to examine whether
the motion space hypothesis holds. Dynamic effects may
be another promising avenue of study. Our preliminary
analysis of the disconnections in ATHLETE’s motion spaces
suggest that some properties of ATHLETE’s nonbiological
morphology may be the culprit in causing the disconnections.
These properties, however, remain elusive. Understanding
the effects of mechanism design on motion spaces will help
roboticists design robots that can reason about motion more
efficiently, and are easier to operate.
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