Bayesian Tactile Exploration for Compliant Docking with Uncertain Shapes

Kris Hauser
Dept. of Electrical and Computer Engineering, Duke University
Durham, North Carolina 27708
Email: kris.hauser@duke.edu

Abstract—This paper presents a Bayesian approach for active tactile exploration of a planar shape in the presence of both localization and shape uncertainty. The goal is to dock the robot’s end-effector against the shape – reaching a point of contact that resists a desired load – with as few probing actions as possible. The proposed method repeatedly performs inference, planning, and execution steps. Given a prior probability distribution over object shape and sensor readings from previously executed motions, the posterior distribution is inferred using a novel and efficient Hamiltonian Monte Carlo method. The optimal docking site is chosen to maximize docking probability, using a closed-form probabilistic simulation that accepts rigid and compliant motion models under Coulomb friction. Numerical experiments demonstrate that this method requires fewer exploration actions to dock than heuristics and information-gain strategies.

I. INTRODUCTION

Uncertainty is an inherent challenge in robot manipulation and locomotion; object/terrain geometries are sensed using imperfect sensors, geometric models are usually incomplete due to occlusion, material and friction properties cannot be directly observed, and robots suffer from calibration and localization error. Although humans are adept at using tactile information to infer the shape of objects and adapting their manipulation or locomotion strategies accordingly, robots remain quite far from mastering such behaviors.

In the sport of rock climbing, human climbers look upward to observe a terrain and ask the question: “Would that terrain feature make a good hand hold?” A good hold contains a pocket, ledge, or protrusion with a size and shape suitable for latching onto with fingers or tools, and applying large downward and/or backward forces. However, the parts of the terrain needed to assess quality are precisely the parts hidden from view. From below, a deep pocket can appear nearly identical to a useless slope (Fig. 1), so humans use the sense of touch to explore the shape of occluded geometry. If the terrain turns out to be unfavorable, the climber may move on to alternate holds or choose different routes.

The goal of this paper is to enable a climbing robot, equipped with a force/torque sensor, to explore static terrains using tactile sensing in order to “dock” an end effector in a location that resists a given load. Toward this end, three novel technical contributions are presented in this work:

1) A Bayesian geometric shape estimation technique that integrates free-space line segments, contact information, and stick/slip information from tactile sensing together with probabilistic priors. The estimator is statistically consistent and robust to rare events.
2) An analytical probabilistic simulation technique that quickly approximates the docking probability under a compliant robot motion model and Coulomb friction.
3) A fast path planner that optimizes the estimated docking probability for the posterior geometry distribution under Gaussian shape uncertainty.

Experiments suggest that a novel Hamiltonian Monte Carlo (HMC) method for shape estimation outperforms other methods under restrictive shape constraints. Analytical probabilistic simulation is much faster than Monte Carlo simulation methods with comparable accuracy, and hence path planning can be performed very quickly. These contributions are integrated into the inference and planning steps of a tactile exploration controller, which is shown to lead to optimized tactile exploration plans that can dock the end effector (or determine a low docking probability) in only a few attempts. The method is also explored in a realistic physics simulation with the Robosimian quadruped docking a hook end effector in 3D terrain.

II. RELATED WORK

Prior gecko, insect, and snake-like climbing robots [33, 23, 31, 32, 37, 25] use bioinspired controllers and end-effector mechanisms to achieve passive compliance and adhesion to terrain uncertainties. These robots largely rely on gaited locomotion, which does not admit much flexibility in foothold choice. Motion planning has been employed for climbing
robots to choose footholds in non-gaited fashion while verifying the existence of equilibrium postures [1], but these algorithms assume precise actuation and terrain modeling.

In the context of legged locomotion on uneven ground, tactile feedback has been explored for state estimation [7] and terrain property estimation [11]. Tactile sensing has proven to be a useful modality in robot manipulation to estimate object properties, such as friction, pose, and shape in the presence of visual sensing error and missing data due to occlusion [15]. Prior work can be grouped into three categories: passive estimation, uncertainty-aware grasping, and active exploration.

Passive contact has been used for state estimation of legged robots by fusing inertial readings with either known terrains [2] or unknown terrain shape observed by sensors [7]. Tactile sensors have been used to classify terrain friction and local shapes of contact points [11]. Machine learning techniques have been used to characterize terrain from visual and tactile sensors, which has been used to predict robustness of footholds [12] or adapt the gaits of a hexapod to optimize movement speed [14]. In manipulation, tactile feedback has been used for localization [27] and shape classification [23] of familiar objects. It has also been used for estimating the location of distinctive features like buttons in textiles [29] and localizing flat objects using texture and high-resolution tactile sensors [21]. A more difficult problem is simultaneous localization and shape estimation, since the unknown shape model must account for collision between fingers and unknown geometry. Prior work in this area typically uses probabilistic point cloud models [15] and Gaussian processes [4, 20, 56] that add point contacts and sensed points as constraints.

Our novel shape inference technique makes use of free space movement and slip detection in addition to contact information. The geometric consistency constraints used in this paper are similar to those proposed by Grimson and Lozano-Perez [8]. However, here they are used in a probabilistic setting to infer distributions of terrain shape rather than binary consistency. Hence, our method is similar to the manifold particle filter method proposed for using contact information for object localization in pushing [19]. The Markov Chain Monte Carlo (MCMC) method proposed here does not permit a constant shift in translation or rotation across all vertices, rather than a partial shifting of the shape. Also, nearby points on the shape tend to be more correlated than distant points.

The elements of X are highly correlated. For example, localization uncertainty makes it more likely to observe a constant shift in translation or rotation across all vertices, rather than a partial shifting of the shape. Also, nearby points on the shape tend to be more correlated than distant points.

$P(X)$ is assumed to be well-approximated by a Gaussian of the form $X \sim N(\mu_x, \Sigma_x)$. We assume $\Sigma_x = A^T A$ is the product of a $2n \times m$ basis matrix A so that $X = AZ + \mu_x$ is an affine transform of a zero mean, unit variance normal variable $Z \sim N(0, I_n)$. The basis matrix A provides a convenient form to encode independence assumptions between different sources of uncertainty.

2) Robot motion model: For simplicity, the robot is assumed to be a point and the shape is assumed static. It is possible to relax the point robot assumption to handle a translating polygon, since the C-space obstacle has a polygonal shape. The robot has known position relative to the reference frame. To handle localization uncertainty, this reference frame can be taken as the egocentric frame, while $P(X)$ captures the localization error. The robot moves along a 2D path using guarded moves [16], which trigger a stop when the force felt by the robot exceeds a threshold.

Our method can include a compliant motion model that allows compliance perpendicular to the direction of motion. The robot may then slide against the shape, and the contact force obeys Coulomb friction. The surface friction is estimated, but the method is tolerant to errors in friction estimate.
A. Bayesian Tactile Exploration Method

During exploration, the robot records the information from sensor readings \(I_i = (s_i, a_i, b_i), i = 1, \ldots, k \) as a history variable \(H \), which is initially empty. It repeats several exploration cycles, each of which consists of the following steps:

1) Inference: infer the posterior distribution \(P(X|H) \) of shape given history. (Sec. IV)

2) Optimization: Optimize the robot’s path \(p(t) \) to maximize a weighted sum of estimated docking probability \(P(\text{dock}|p(t), H) \) and an exploration bonus. (Sec. V)

3) Execution: Execute \(p(t) \). If the robot docks successfully, we are done. Otherwise, back up to a non-colliding point, record the sensor data in \(m \) new information segments \(I_{k+1}, \ldots, I_{k+m} \) into the history: \(H \leftarrow H \cup \{I_{k+1}, \ldots, I_{k+m}\} \), and repeat from step 1.

Execution also stops with failure if the docking probability drops below a threshold, which is set to 0.001 in our experiments. A successful three-cycle execution is shown in Fig. 2.

B. Segment-segment collision constraints

Two planar segments \(\overrightarrow{ab} \) and \(\overrightarrow{cd} \) collide if and only if there exists a solution \((u, v) \) to the system of equations

\[
a + u \cdot \overrightarrow{ab} = c + v \cdot \overrightarrow{cd}, \quad \text{with } 0 \leq u, v \leq 1.
\]

Solving for \((u, v) \) via 2x2 matrix inversion we get

\[
\begin{bmatrix}
 u \\
v
\end{bmatrix} = \frac{1}{\alpha} \begin{bmatrix}
c_2 - d_2 & d_1 - c_1 \\
a_2 - b_2 & b_1 - a_1
\end{bmatrix} \begin{bmatrix}
c_1 - a_1 \\
c_2 - a_2
\end{bmatrix}
\]

IV. Constrained Monte Carlo Shape Inference

To infer the shape distribution given history, we use Monte Carlo (MC) methods to draw a finite sample set from the true posterior distribution. The sample set will serve as an estimate of the distribution of shape (mean, covariance, and bounds) that improves in accuracy as more samples are drawn.

A. History consistency constraints

The posterior distribution of shapes conditioned on consistency with the sensor history \(H = \{I_i = (a_i, b_i, s_i)|i = 1, \ldots, k\} \) can be expressed using Bayes’ rule: \(P(x|H) = \frac{P(H|x)P(x)}{P(H)} \). Let \(S_x \) denote the shape of \(S \) given that the vertex positions are given by state \(x \). Under the assumption of perfect sensor information, \(P(H|x) = 1 \) if \(H \) is consistent with \(S_x \), and \(P(H|x) = 0 \) otherwise. Hence, \(P(x|H) \propto P(x) \) if \(S_x \) is consistent with \(H \), and \(P(x|H) = 0 \) otherwise.

History consistency imposes the following conditions:

1) \(\partial S_x \) does not overlap any free segment \(a_ib_i \).

2) \(\partial S_x \) overlaps all colliding segments \(a_ib_i \).

We represent these conditions as mathematical inequalities. For each free segment, we require that:

\[
f_{\text{free},a_i,b_i}(x) = \max_{(u,v) \in E} (-\max_k g_k(a_i, b_i, x_u, x_v)) \leq 0
\]

where \(x_u, x_v \) are the endpoints of an edge \((u, v) \) specified by state \(x \), and \(g_k \). \(k = 1, \ldots, 4 \) are the segment-segment collision constraints as defined in Sec. [IV-B](Fig. 3) left. For each colliding segment, we require that

\[
f_{\text{coll},a_i,b_i}(x) = \min_{(u,v) \in E} (\max_k g_k(a_i, b_i, x_u, x_v)) \leq 0.
\]

Note that there is a nested minimum and maximum in this expression because only one edge of the shape needs to collide. This condition can also be interpreted as a boolean disjunction.

Moreover, if stick/slip information is available for a colliding segment \(a_i/b_i \), then the angle of the shape normal relative to the motion direction is constrained. Specifically:

1) \(b_i/a_i \in \text{Conc}(n_{x_p} + \mu t_{x_p}, n_{x_p} - \mu t_{x_p}) \) if \(s_i = \text{stick} \).

2) \(b_i/a_i \notin \text{Conc}(n_{x_p} + \mu t_{x_p}, n_{x_p} - \mu t_{x_p}) \) if \(s_i = \text{slip} \).

Here, \(\overrightarrow{x_y} \equiv y - x \), the first point of collision is denoted \(p \), and the normal and tangent directions of \(\partial S_x \) at \(p \) are denoted \(n_{x,p} \) and \(t_{x,p} \), respectively. As we shall see in Sec. [IV-C] these conditions add 2 additional constraints to (2), for a total of 6 constraints per edge (Fig. 3) right.

Overall, a shape \(x \) is history-consistent iff it satisfies

\[
f_H(x) = \max_{(u,v) \in E} f_{\text{free},a_i,b_i}(x) \leq 0.
\]
with $\alpha = (b_1 - a_1)(c_2 - d_2) - (c_1 - d_1)(b_2 - a_2)$ the determinant. Assuming $\alpha > 0$, that is, that \overrightarrow{ab} is CCW from \overrightarrow{cd}, the original condition can then be rewritten as

$$0 \leq \begin{bmatrix} c_2 - d_2 & d_1 - c_1 \\ a_2 - b_2 & b_1 - a_1 \end{bmatrix} \begin{bmatrix} c_1 - a_1 \\ c_2 - a_2 \end{bmatrix} \leq \alpha$$ \hspace{1cm} (6)

which is a quadratic inequality. Specifically, if we let $y = (c_1, c_2, d_1, d_2)$ denote the variables determining the coordinates of \overrightarrow{cd}, this can be rewritten as two quadratic inequalities and two linear inequalities

$$-y^T Q y + [-a_2 \ a_1 \ a_2 \ -a_1] y \leq 0 \hspace{1cm} (7)$$

$$y^T Q y + [b_2 \ -b_1 \ -b_2 \ b_1] y \leq 0 \hspace{1cm} (8)$$

$$[b_2 - a_2 \ a_1 - b_1 \ 0 \ 0] y + (a_2 b_1 - a_1 b_2) \leq 0 \hspace{1cm} (9)$$

$$[0 \ 0 \ a_2 - b_2 \ b_1 - a_1] y + (a_1 b_2 - a_2 b_1) \leq 0 \hspace{1cm} (10)$$

with Q a constant 4x4 matrix. (It can also be shown that $\alpha \geq 0$ must hold if these equations are simultaneously satisfied.)

C. Segment stick/slip constraints

Let the operator x^\perp on \mathbb{R}^2 yield the CCW perpendicular vector ($-x_2, x_1$). For a motion along \overrightarrow{ab}, the *stick* condition requires

$$\overrightarrow{ba} \in \text{Cone}(\overrightarrow{dc} + \mu \cdot \overrightarrow{dc}, \overrightarrow{dc} - \mu \cdot \overrightarrow{dc}),$$

where Cone is the cone of positive combinations of its two arguments and μ is the friction coefficient. The constraint $x \in \text{Cone}(y_1, y_2)$ with $x \in \mathbb{R}^2$ is equivalent to two linear inequalities $x^\perp y_1 \geq 0$, $x^\perp y_2 \leq 0$ under the condition that $y_i^T y_2 \geq 0$ (i.e., y_2 is clockwise from y_1). This condition holds in (11), so Cone can be rewritten as inequalities

$$\begin{bmatrix} \mu \cdot b_2 a_2 - b_1 a_1 \\ \mu \cdot b_2 a_2 + b_1 a_1 \end{bmatrix} \leq c_d \leq 0$$ \hspace{1cm} (12)

that are linear over the vertex vector $y = (c_1, c_2, d_1, d_2)$. Moreover, the *slip left* condition is equivalent to $\overrightarrow{ba} \in \text{Cone}(\overrightarrow{dc} - \mu \overrightarrow{dc}, -\overrightarrow{dc})$, and *slip right* is equivalent to $\overrightarrow{ba} \in \text{Cone}(\overrightarrow{dc}, \overrightarrow{dc} + \mu \overrightarrow{dc})$. A similar derivation produces two linear inequalities in y for either case.

D. Constrained Monte Carlo Sampling

Monte-Carlo methods are the preferred approach to sample from distributions $P(x|H)$ without having to compute $P(H)$. Without loss of generality, we shall sample a sequence $z_1^{(1)}, \ldots, z_N^{(N)}$ from the isotropic Gaussian distribution $z \sim N(0, I_m)$ under the restriction $f_H(A z + \mu_x) \leq 0$.

The simplest method for constrained MC is rejection sampling (Fig. 4a), which leads to an i.i.d. sequence. However, procedure can be extremely inefficient, as $P(H)$ is often miniscule, and it will need to draw an expected $N/P(H)$ samples to find N feasible ones. MCMC methods can lower the rejection rate, but at the cost of introducing dependence between subsequent samples (autocorrelation). As a baseline MCMC technique, Metropolis-Hastings (MH) takes small perturbations and accepts moves with a given acceptance probability (Fig. 4b). Our experiments suggest MH performs poorly in constrained sampling due to strong autocorrelation.

We also consider the *Gibbs sampling* technique (Fig. 4c), which has been applied to Gaussian distributions truncated by linear inequalities. Each iteration samples the posterior distribution of a single element of the state along a given axis, keeping all other elements fixed. Specifically, $z_i^{(j+1)} \leftarrow P(z_i|H, z_j^{(j)}, \ldots, z_{i-1}^{(j)}, z_{i+1}^{(j)}, \ldots, z_m^{(j)})$, with $i = j \mod m$ denoting the chosen element of the state vector. Customarily, every mth sample is kept and the rest discarded. This approach leads to a constant rejection rate of $(m-1)/m$, which is independent of $P(H)$.

To sample z_i, we determine a feasible range by intersecting the feasible set along the line through $Az + \mu_x$ in direction $A e_i$. Specifically, we determine the set of t such that $f_H(A(z+$$...
\(e_i(t - z_i) + \mu_e \leq 0\). We discuss how to do so in Sec. [IV-E]

The range is a set of disjoint intervals, from which \(t\) can be sampled from using truncated Gaussian sampling routines that are widely available in scientific computing software libraries.

We finally present a constraint bouncing Hamiltonian Monte Carlo (HMC) method (Fig. 4d), which has been applied to Gaussian distributions under linear and quadratic inequalities [24]. For each iteration, HMC treats the state as a dynamic particle subject to momentum and external force, which has a momentum vector \(p_0\) that is sampled independently at random. Starting from \(z_0 \equiv z^{(i)}\) and \(p_0\), the method integrates the equations of motion of a dynamic particle subject to the system Hamiltonian \(H(z, p)\), which is the sum of a potential energy \(U(z) = \log P(z)\) and a kinetic energy \(K(p)\) which is a positive definite function of \(p\). The time evolution of the particle follows the coupled ODE:

\[
\frac{d}{dt}z = \frac{\partial H}{\partial p}, \quad \frac{d}{dt}p = -\frac{\partial H}{\partial z}. \tag{13}
\]

This dynamical system is reversible, and hence integration of these equations for a given timestep \(T\) to obtain a proposal state \((z', p')\) can be viewed as a Metropolis-Hastings proposal distribution. In the Gaussian case the integration greatly simplifies [24]. With \(\log P(z) = 1/2\|z\|^2\) and setting \(K(p) = 1/2\|p\|^2\), the equations of motion trace out an ellipsoid given by the closed form \(z(t) = z_0 \cos t + p_0 \sin t\). Moreover, the MH acceptance probability is always 1, so a step \(z(t+1) = z(t)\) can always be taken for any value of \(t\). A recommended step size is \(t = \pi/2\) because it tends to produce low autocorrelation [24].

A given step along the elliptic trajectory may violate feasibility, so a constraint bouncing method is used. This involves determining the first point in time \(t_b\) at which a constraint is violated, advancing the system to \(t_b\), and then reflecting the momentum about the gradient of that constraint. The equations of motion are then integrated forward again until another constraint is hit, or the desired timestep is reached. Again, feasible range determination is used here (Sec. [IV-E]).

Note that MCMC methods must begin from a feasible initial seed. We find the seed by random descent of \(f_H\) from an initial state sampled from \(N(0, I_m)\). If this fails after a given number of iterations, we sample another initial state and repeat.

E. Feasible range determination

Both Gibbs and HMC sampling steps determine the feasible interval set along a state space trajectory \(z(t)\). The Gibbs method samples \(t\) from all feasible intervals along a line, while HMC \(t\) from the feasible interval containing \(t = 0\) along an elliptic trajectory. An interval set is a collection of \(r \geq 0\) disjoint intervals \([t_1, t_2] \cup [t_3, t_4] \cup \cdots \cup [t_r, t_{r+1}]\), with \(t_1 = -\infty\) and \(t_{r+1} = \infty\) representing unbounded sets. Interval sets can be solved in closed form by polynomial inequalities denoting intersection with the primitive linear and quadratic constraints [10] and [12]. Fig. 5 illustrates the process for a linear path and a single collision constraint.

Let us consider a general primitive constraint \(g_k(y) = y^T Q y + y^T p + r \leq 0\), with \(y \equiv (e_1, e_2, d_1, d_2)\) the coordinates of the vertices of an edge. The trajectory \(y(t)\) moves along a line / ellipse in \(\mathbb{R}^4\) for Gibbs / HMC, respectively, since vertices are linear functions of state. We first determine a set of roots in \(t\) such that \(g_k(y(t)) = 0\) as follows.

For a linear constraint and linear trajectory \(y(t) = y_0 + vt\), the root satisfies a linear equation \(p^T y_0 + t p^T v + r = 0\). For a quadratic constraint and linear trajectory, the roots of \(y_0^T Q y_0 + 2 t v^T Q y_0 + t^2 v^T Q v + p^T y_0 + t p^T v + r \leq 0\) are determined by the quadratic equation.

For elliptical trajectories, we solve for roots of \(y(t) = y_0 \cos t + v \sin t\) by introducing variables \(c = \cos(t), s = \sin(t)\), with \(c^2 + s^2 = 1\). Then, a linear equality can be rewritten to yield a quadratic equation in \(s\). Quadratic constraints can be solved to produce a degree 4 polynomial in \(s\), whose roots are determined using characteristic polynomials. Each root of \(s\) yields two possible roots of \(t = \pm \sin^{-1}(s)\).

The roots calculated thusly split the number line into sections, and the value of the inequality on each section \([t_i, t_{i+1}]\) could be either positive or negative. Due to numerical errors, best results are achieved by checking the value of the constraint away from the roots, e.g., at interval midpoints. The final feasible set corresponding to (3) is constructed by intersecting (max operations), unioning (min operations), and taking the complement (negation) of primitive interval sets.

F. Empirical performance

All methods in this paper are implemented in the Python programming language, and experiments are conducted on a single core of a 2.60GHz Intel Core i7 PC. Note that these algorithms can be almost trivially parallelized, and would also benefit from implementation in a compiled language.

Measuring sampling performance requires accounting for the autocorrelation of the sequence (particularly in the MH algorithm, as illustrated in Fig. 6). We measure the performance of each MCMC technique by the Effective Sample Time (EST), which estimates the amount of computation time needed to generate one effectively independent draw. EST is a function of total computation time \(T\) and Effective Sample Size \(ESS\) given by \(EST = T/ESS\). Fig. 7 reports performance for all four sampling techniques on three problems.
which would require \(N \) deterministic simulations of the robot’s motion model along the path \(p(t) \) with given shapes \(x^{(i)} \). For a path consisting of \(m \) segments, evaluating (15) is an \(O(mnN) \) operation. We present a probabilistic simulation method that is more computationally efficient under the assumption that \(P(X|H) \) is well-approximated by a Gaussian distribution. This new method runs in \(O(mn) \) time per path.

Moreover, we make the assumption that resistance is only desired along the final segment of the path. Our path planner enforces that a path should terminate in a segment that crosses the expected midpoint of an edge \(e \) in the direction \(-f_{\text{load}}\). We call this the optimal terminal segment for \(e \). The objective function is nearly unaffected after departing sufficiently far from the shape, so the main question is how to optimize the terminal segment so that estimated docking probability (now an \(O(n) \) operation) is maximized and the remainder of the path has nearly 0 probability of collision.

V. Optimizing Exploration Plans

Given a path \(p(t) \), let \(E_d \) denote the event that docking is successful during execution, i.e., \(f_{\text{load}} \) is resisted at the robot’s stopping point. The docking probability is given by:

\[
P(E_d|p(t), H) = \int_{X} P(E_d|p(t), x)P(x|H)dx.
\]

Since we assume no stochasticity in the robot’s motion, \(P(E_d|p(t), x) \) is a deterministic function \(E_d(p(t), x) \rightarrow \{0, 1\} \) which can be determined by simulation, because the shape is known given \(x \). The goal of the path planner is to determine \(p(t) \) starting at the current state \(p_0 \) to maximize the weighted sum of (14) and an exploration bonus.

Minimizing the speed of evaluating (14) is essential because the planner will need to evaluate many potential docking paths. Given the Monte Carlo samples \(x^{(1)}, \ldots, x^{(N)} \), Eq. (14) could be immediately approximated as:

\[
P(E_d|p(t), H) \approx \frac{1}{N} \sum_{i=1}^{N} E_d(p(t), x^{(i)})
\]

\[\text{Fig. 6: Illustrating the Sloper problem with five constraint segments. Metropolis-Hastings (MH) samples exhibit strong autocorrelation and bias in estimating the mean on the lower portion of the terrain (dotted line), while the HMC method is far less autocorrelated and biased. Each plot shows 20 samples drawn at random from sets of 1,000 and 100 samples for MH and HMC, respectively.}\]

\[\text{Fig. 7: Effective Sample Time for four sampling techniques (lower is better) over three problems whose constraints are increasingly restrictive. The performance of rejection sampling rapidly degrades when highly constrained, while Gibbs and HMC are more tolerant. Problem 3 is illustrated in Fig. 6.}\]
The direction of force application is constant and exceeds the contact occurs for a edge \(P \). Because each vertex sparse matrix inversion. The overall probability of docking is be solved for all features of the shape in \(O \) and transform the endpoint distribution to a bivariate Gaussian \(N(A_{12}\mu_{cd} + b_{12}, A_{12}\Sigma_{cd}A_{12}^T) \) and evaluate the probability integral over the quadrant \((-\infty, 0) \times (-\infty, 0) \). This evaluation can be done accurately using a low degree quadrature \(\xi \).

2) Probability of sticking/sliding: The stick event \(K_v \) at a vertex \(v \) is equivalent to a cone condition at the extrema of the friction cones of the outgoing edges \(r(v) = \overrightarrow{vw} \) and \(l(v) = \overrightarrow{vw} \):

\[
\overrightarrow{ba} \in \text{Cone}(\overrightarrow{vu} + \mu\overrightarrow{uv} - \mu\overrightarrow{vu} + \mu\overrightarrow{vu}).
\]

\(SL_v \) is equivalent to \(\overrightarrow{ba} \in \text{Cone}(\overrightarrow{vu} - \mu\overrightarrow{uv}, -\overrightarrow{vu}) \), and \(SR_v \) is equivalent to \(\overrightarrow{ba} \in \text{Cone}(\overrightarrow{vu} + \mu\overrightarrow{uv}, \overrightarrow{vu} + \mu\overrightarrow{vu}) \). As before, cones are transformed to inequalities in \(u, v, w \) and evaluate the probability

\[
\sum_{v \in V} P(S_v) + \sum_{e \in E} P(S_e).
\]

The system of equations can further be simplified under certain conditions. Because each vertex \(v \) has no volume, \(P(C_v) = 0 \). In a non-compliant motion model, all \(P(L_F) \) and \(P(R_F) \) probabilities are 0. In the compliant model, \(P(K_v|L(e)) = P(K_v|R(e)) = 0 \) and \(P(S(e)) = P(S(e)|R(e)) = 1 \) for all edges \(e \) because if a robot slips on a vertex, it will continue until the next vertex. This is because the direction of force application is constant and exceeds the available friction along the entire length of the edge.

1) Probability of Contact: The probability \(P(C_v) \) that contact occurs for a edge \(e = \overrightarrow{cd} \) is approximately the integrated density of \(P(c, d|H) \) restricted to the feasible set \((\overrightarrow{cd}, \overrightarrow{dc}) \) (Fig. 8a). Adding the stick or slip constraints adds two additional linear inequalities in the form \(\text{Cone}(\overrightarrow{vu} + \mu\overrightarrow{uv} - \mu\overrightarrow{vu} + \mu\overrightarrow{vu}) \).

To estimate the integrated density quickly, for each edge we produce the 4-D Gaussian approximation \(P(c, d|H) \approx N(\mu_{cd}, \Sigma_{cd}) \). We linearize the quadratic term of \(y = \mu_{cd} \) and produces 6 linear inequalities of the form \(Ay + b \leq 0 \) with \(y = (c_1, c_2, d_1, d_2) \). We approximate the probability that the inequalities are satisfied by assuming independence of three pairs of inequalities, but allowing dependence in each pair. To calculate that the probability that a pair of inequalities \(a_1^T y + b_1 \leq 0 \) and \(a_2^T y + b_2 \leq 0 \) are mutually satisfied, we define \(A_{12} = [a_1a_2]^T \) and \(b_{12} = [b_1b_2]^T \) and calculate the endpoint distribution to a bivariate Gaussian \(\text{N}(A_{12}\mu_{cd} + b_{12}, A_{12}\Sigma_{cd}A_{12}^T) \) and evaluate the probability integral over the quadrant \((-\infty, 0) \times (-\infty, 0) \). This evaluation can be done accurately using a low degree quadrature \(\xi \).

Illustrating probabilistic simulation. (a) To determine the edge collision likelihoods (illustrated as size of circles) the segment collision conditions are checked against the joint distribution over endpoints \(c \) and \(d \). (b) Determining slide-right probabilities for three edges under compliance. The first slip occurs with moderately low probability. The second slide occurs with high probability conditional on the first slip. The third slide probability is nearly 0, since the outgoing edge is far more likely to induce a slip left.

Applying conditioning, we obtain recursive linear equations

\[
P(S_F) = P(C_F, K_F) + P(L_{r(F)}|P(K_F|L_{r(F)}) + P(R_{r(F)}|P(K_F|R_{r(F)}))
\]

\[
= P(C_F, SL_F) + P(L_{r(F)}, SL_F) + P(SL_F|L_{r(F)})
\]

\[
P(R_F) = P(C_F, SR_F) + P(R_{r(F)}, SR_F) + P(SR_F|R_{r(F)}).
\]

Sections V-A1 and V-A2 describe how to calculate \(P(C_F, \cdot) \), \(P(L_{r(F)}, \cdot) \), and \(P(R_{r(F)}, \cdot) \), with \(\cdot \) standing in for a primitive event. Once calculated, the system of equations can be solved for all features of the shape in \(O(n) \) time using sparse matrix inversion. The overall probability of docking is

\[
\sum_{v \in V} P(S_v) + \sum_{e \in E} P(S_e).
\]

The system of equations can further be simplified under certain conditions. Because each vertex \(v \) has no volume, \(P(C_v) = 0 \). In a non-compliant motion model, all \(P(L_F) \) and \(P(R_F) \) probabilities are 0. In the compliant model, \(P(K_v|L(e)) = P(K_v|R(e)) = 0 \) and \(P(S(e)) = P(S(e)|R(e)) = 1 \) for all edges \(e \) because if a robot slips on a vertex, it will continue until the next vertex. This is because the direction of force application is constant and exceeds the available friction along the entire length of the edge.

B. Optimal Path Planning

Let \(\mathcal{P} \) denote the set of previously executed paths. The overall objective function adds to the docking probability an exploration bonus term as follows:

\[
J(p) = P(E_d|p, H)B \left(\frac{1}{w} \min_{p' \in \mathcal{P}} d(p, p') \right)
\]

where \(w \) is the bonus weight and \(d(p, p') \) measures some notion of path-wise distance. We set \(d(p, p') \) to measure the distance between endpoints of the terminal segments of the
paths. The bonus factor $B(z) = 1 - \exp(-z)$ transforms the domain $[0, \infty)$ to $[0, 1]$, with 0 denoting low novelty (e.g., $d(p, p') = 0$) and 1 denoting high novelty. Setting $w = 0$ leads to a greedy approach, but having a small weight helps account for sensor noise and errors in the inference model. We set w equal to the spatial resolution of the contact detector.

The planner maintains an optimal path p^*, docking probability P_{dock}, and function value J^*, and proceeds as follows:

1. Initialize $p^* \leftarrow \text{nil}$, $P_{\text{dock}}^* \leftarrow 0$, and $J^* \leftarrow \infty$.
2. For each edge in order of increasing $P(C_e, K_e)$ for e’s optimal terminal segment, repeat:
 3. Perform docking probability estimation. If $P(S_e) < P_{\text{dock}}^*$ or $J(p) < J^*$, it cannot be optimal, so skip to the next edge.
 4. Plan a collision-free path p ending in e. If successful, store $p^* \leftarrow p$, $P_{\text{dock}}^* \leftarrow P(S_e)$, and $J^* \leftarrow J(p)$.

In Step 4, we first establish a likely obstacle region (LOR), a free-space region in which collision has moderate probability. Its complement is the unlikely obstacle region (UOR). LOR is obtained by taking convex hulls of each edge over the shape estimation samples, and then performing a union operation. The planner works backward from the terminal point, which lies in LOR. It first finds a path to the boundary of LOR, starting in direction f_{load}, while maintaining the invariant that clearance away from the mean shape is monotonically increasing $[35]$. Once the path exits LOR, it plans a path to the start point using UOR as free-space. Shortest paths through UOR can be planned to all vertices of LOR quickly using standard methods, e.g., a visibility graph.

C. Experimental results

Fig. [10] shows the docking success rate and cycle count on three problems, where 10 ground truth shapes are sampled at random. In Sloper, only 5/10 ground truth shapes had a feasible solution. This technique is compared with 1) a growing-window (GW) technique that starts at the site most likely to dock successfully, then attempts docking at increasingly distant sites, and 2) an information-gain (IG) technique that alternates between one greedy docking step and two information-gain steps, using our HMC estimator to determine a shape distribution. The same path planner is used for all techniques. Note that the standard deviation for cycle count is generally high, since some instances are solved luckily on the first try, while others require dozens of cycles. Our method never failed on a feasible instance, and found a solution with fewer executions than GW or IG. Also, the modest cycle count on Sloper indicates that our method terminates quickly on infeasible problems by correctly estimating a low likelihood of feasibility.

Supplemental videos at http://motion.pratt.duke.edu/locomotion/tactile.html show our technique in action with a model of the Robosimian robot and a 3D climbing wall scan generated via photogrammetry in a realistic physics simulation (Fig. 1). Given a simulated noisy vertical laser scan, our technique generates docking trajectories for a hook end effector along a 2D plane. An operational space controller performs guarded moves using a force sensor to detect collision. The tactile exploration method attempts to dock at multiple sites in response to failed docking moves.

VI. Conclusion

This paper presented a Bayesian tactile exploration controller for docking a point against uncertain shapes. Its two technical contributions include 1) Hamilton Monte Carlo shape sampling, which outperforms other sampling methods, and 2) a probabilistic simulator that quickly computes probability of docking for Gaussian shape models under compliance and friction. The resulting controller is reliable and usually requires few cycles to localize docking sites. In ongoing work, we are attempting to evaluate this technique on the physical Robosimian robot. Future work may consider generalization to other geometric representations, such as point clouds, occupancy grids, and 3D meshes.

Acknowledgment

The author would like to thank Hayden Bader, Gao Tang, and Changrak Choi for helping proofread this manuscript. This research was supported by NSF NRI grant #1527826.

