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Abstract— ROBOPuppet is a method to create inexpensive,
tabletop-sized robot models to provide teleoperation input to
full-sized robots. It provides a direct physical correspondence
from the device to the robot, which is appealing because users
form an immediate “mental mapping” of the input-output
behavior. We observe that untrained users can immediately
exploit tactile and physical intuition when controlling the
puppet to perform complex actions the target robot. The key
contribution of this paper is a build procedure that embeds
standardized encoder modules into scaled-down CAD models
of the robot links, which are then 3D printed and assembled.
This procedure is generalizable to variety of robots, and parts
cost approximately seventeen dollars per link. We also present
a simple software tool for fast calibration of the puppet-robot
mapping, and a safety filtering procedure that sanitizes the
noisy inputs so that the robot avoids collisions and satisfies
dynamic constraints. A prototype ROBOPuppet is built for a
6DOF industrial manipulator and tested in simulation and on
the physical robot.

I. INTRODUCTION

Robots are teleoperated by humans in many applications,
including nuclear plants, robotic surgery, explosive ordnance
disposal, and search and rescue. But a common challenge
for users is to learn a “mental map” of the correspon-
dence between the input device and the target robot. Joint
angle control, via buttons or joysticks, requires learning
the nonlinear map from joint angles to workspace motion.
Cartesian end-effector control is typically more intuitive, but
the user must learn disparities between kinematic limits of
the input device and those of the target robot. Moreover,
end-effector motions may produce unexpected effects on
other joints, which makes collision avoidance challenging.
An alternate approach is often taken in programming from
demonstration (PbD) [2] via kinesthetic teaching, in which
the user directly pushes and pulls the robot. This is intuitive
because the taught poses are in one-to-one correspondence
with executed poses, and physical interaction immediately
provides a sense of shape, dimension, and weight of the
target robot. However, these systems require force sensing
hardware and also cannot be used for remote teleoperation
because they require physical co-presence.

This paper introduces ROBOPuppet, a new technique
for building low-cost, kinesthetic robot control devices that
duplicate the geometry and kinematics of a robot, but at
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Fig. 1. ROBOPuppet next to target robot.

smaller scale suitable for desktop use. The puppet is a 3D-
printed miniature of the target robot with encoders embedded
in the joints that translates the user’s physical actions with the
model directly to the robot’s actions. The kinesthetic mode
of operation is familiar to those who have played with action
figures as a child, and we hypothesize that it lets users control
complex motions in a more intuitive way than using joysticks
and joint-level control.

A key characteristic of the approach is its generality; it
can be applied to a variety of different robots via the use
of standardized hardware modules and geometry processing
steps. The method is also highly accessible: we make use of
inexpensive, off-the-shelf electronics and new rapid proto-
typing technologies, specifically the wide availability of 3D
printers to non-specialized users [4] [16], to create models
that accurately mimic the proportions, look, and feel of the
target robot. Because the puppet is lower-fidelity, imprecise
replica, we apply a sanitizing procedure to ensure the robot’s
safety. In summary, the contributions of ROBOPuppet are:

• A low-cost joint encoder assembly that is embedded



in the printed parts of the ROBOPuppet to provide
encoder readings and adjustable friction for maintaining
its configuration under gravity.

• A systematic, step-by-step process for building a custom
ROBOPuppet for a new robot via geometry preprocess-
ing, 3D printing, and assembly.

• A calibration tool for easily calibrating a mapping from
encoder values from the puppet to desired joint angles
of the robot.

• A real-time planning method for translating puppet
movements into robot movements that respect the
robot’s dynamic limits and avoid collisions with known
obstacles.

As a preliminary demonstration of the ROBOPuppet
method, we built a prototype puppet of the Staübli TX90L
6DOF robot arm. A 30% scale device was created and used
to control the arm both in real-time simulation as well as
on the physical robot. The prototype puppet costs a total
of $85. Instructions, requisite 3D models, and software for
ROBOPuppet are available at http://robopuppet.org

II. RELATED WORK

The Staübli TX90L robot is controlled manually using
the SP1 control pendant (Fig. 2), which allows a user to
control joint angles or Cartesian motion via twelve buttons
(increase and decrease value on each axis) along with two
buttons to increase/decrease speed. This is a typical controller
for an industrial robot. Other robot control devices range
from computer GUIs [5], haptic controllers [7], joysticks,
3D sensors, and game control pads [13], [18].

Input devices can be categorized between joint level
vs cartesian control and kinesthetic vs non-kinesthetic ap-
proaches. [9] Cartesian control is often more intuitive than
joint-level control, but requires careful design of the mapping
to joint space to avoid singularities and kinematic limits of
the robot and limits of the input device. Furthermore, it is
challenging in Cartesian mode to control non-end effector
points on the robot (for example, an elbow). Non-kinesthetic
devices like control pendants, GUIs, and joysticks are often
more ergonomically suited for long-term operation, e.g. hold-
ing a pose for a long time. Kinesthetic control devices like
haptic devices translate bodily movements in workspace to
robot movements in workspace, and are often more appealing
for novice users to operate due to the ability to feel forces felt
by the robot [3], [14]. In contrast, ROBOPuppet proposes a
control device in one-to-one correspondence with the target
robot, combining the benefits of direct joint control and
kinesthetic feedback.

Direct kinesthetic control of joints is not a new idea. The
most widely used technique is Programming by Demonstra-
tion (PbD) for teaching configurations to robots via direct
physical manipulation [2]. This has been applied to several
commercial industrial robots. However, physical manipula-
tion of the robot is not possible in remote environments.
The most closely related work to ours is the development of
a 5-axis robotic motion controller to teleoperate an industrial
robotic arm [15]. The application of this controller is similar

to one considered here, but is more expensive, requires
significant design and mechanical engineering expertise, and
only matches the link lengths and joint angles of the target
robot. By contrast, ROBOPuppet is a generally applicable
process for building low-cost control devices, it requires
very little experience to build and assemble, and the device
matches the geometry of the robot.

III. SUMMARY

The method consists of five major elements.
1) Standardized, inexpensive joint encoder assemblies

that contain encoders, can be adjusted according to the
joint orientation of the links of the robot, and enable
the puppet to support its own weight against gravity
using adjustable friction controls.

2) Pocket geometries, which are 3D models which are
subtracted from the printed parts to provide structures
for holding the base of the encoders in the joint surface
and the encoder shafts in the opposing joint surface.
They also provide holes for bolts used to control
the friction between joint surfaces, and access ports
for wiring and other innards of the puppet that are
necessary for assembly.

3) A straightforward build process for building a custom
ROBOPuppet for a new robot using a robot CAD
model, the provided joint encoder assemblies, and
pocket geometries in conjunction with 3D printing.
Wiring is also completed in this step.

4) A calibration tool that allows the user to easily create a
mapping from the input encoder values to appropriate
joint angles on the robot. This tool asks the user to
place the puppet into several poses and automatically
calibrates the mapping.

5) An input sanitizer that ensures that requested motions
are safe and feasible for the robot to perform. A real-
time motion planner translates raw inputs to output tra-
jectories that satisfy kinematic and dynamic limitations
of the robot. This element can also avoid self-collisions
and collisions with the environment, if an environment
model is available.

We claim that a viable ROBOPuppet can be constructed
for a target robot at any scale such that the scaled links fit
within the 3D printer’s workspace, and are sufficiently large
to embed the joint encoder assemblies.

IV. CONSTRUCTION

The construction process can be further subdivided into
geometry preprocessing, printing, and assembly phases. To
build the ROBOPuppet for a new target robot, the robot’s
CAD model is scaled such that the smallest joint surface
to be instrumented can successfully hold the joint encoder
assemblies and, once scaled, the void primitives are sub-
tracted out of each part. This section presents a step-by-step
process for installation and assembly of the final puppet out
of printed parts and joint encoder assemblies. The workflow
for this process can be seen in Fig. 3.



Fig. 2. SPI Control pendant(left) for the Staübli TX90L robot(center) compared with the ROBOPuppet controller(right)

Fig. 3. The general workflow for using the ROBOPuppet method to create
a ROBOPuppet controller for a new robot.

A. Joint Encoder Assemblies

Our joint angle encoders use 5kΩ linear taper potentiome-
ters. They are carved with threading down the length of the
encoder shaft for the installation of the friction control bolt
and a small hole is drilled to contain the roll pin, a small
pin used to translate motion of the part into motion in the
encoder shaft. The potentiometer joint encoder assembly has
a base dimension of 2.5 cm x 3.25 cm x 1.75 cm with a
shaft of diameter of 0.75 cm and a length of 5.25 cm and is
installed in a printed bracket that is sized to easily fit in the
modified parts. A mounted joint encoder assembly, ready to
be installed in the printed parts, is shown in Fig. 4(b).

Fig. 4. (a) Printed part with modified joint surface and mounting bracket.
(b) Joint encoder assembly is installed into bracket (c) Bracket with mounted
joint encoder assembly is installed in joint surface using bolts through the
bracket attached with nuts accessed in the installation access tunnel.

B. Digital Phase

During the digital phase the target robot’s CAD model is
downloaded and the robot is scaled to the desired size. The
minimum scale factor for a ROBOPuppet can be determined
by identifying smallest joint surfaces that are to be controlled
and ensuring that these surfaces can hold the joint encoder
assemblies. The user chooses the joints to instrument and
the CAD file is separated along these joints into individual
meshes suitable for printing. Each mesh is modified using
pocket geometries to provide space to access and install the
joint encoder assemblies. (Fig. 5)

Pocket Geometries Our build process uses three pocket
geometries that have been designed to ease the modification
of all model links to fit the joint encoder assemblies.

1) Joint Encoder Pockets - complex geometries that create
a void in which the base of the encoder resides, spaces



Fig. 5. Pocket geometries are subtracted from the joint surface to create
the voids, pockets and tunnels neccesary to embed and install hardware
components.

Fig. 6. (a) Encoder void, (b) Encoder bracket mount point, (c) Installation
access tunnel, (d) Friction bolt void, (e) Encoder shaft pocket, (f) Roll pin
pocket

to mount a bracket to affix the encoder to the joint
surface and access tunnels to assemble the controller.

2) Joint Axis Pockets - geometries that create a pocket
to hold the encoder shaft on opposing joint surfaces
with voids for the roll pin and tunnels and voids for
the friction control bolt.

3) Convenience voids - simple geometries used to create
access tunnels and voids in printed parts to give access
during installation and maintenance.

The pocket geometries were created in such a way that,
during mesh modification, they are to be centered about the
axis of rotation; this makes them simple to use and ensures
that the encoder’s shaft is centered properly and the part
moves correctly when the controller is assembled. Examples
of pocket geometries embedded within joint surfaces can be
seen in Fig. 5 and Fig. 6.

C. Physical Phase

The physical phase of the construction stage involves
printing the parts, installing joint encoder assemblies into
the joint surfaces, and assembling the parts into the finished
controller.

Printing. The puppet is printed on a 3D printer. Post
processing must be done in order to clean any extraneous
material from the printing process.

Hardware installation. At this point polystyrene foam
sheeting is installed on joint surfaces to aid in friction
control and creating a smooth action. Finally, joint encoders
assemblies should be installed using the bracket mounts
created in each joint surface. (Fig. 4)

Fig. 7. Installing the joint assemblies and friction control bolts in the
printed model.

ROBOPuppet Assembly. Joints are assembled by first
installing a roll pin into a hole pre-drilled into the encoder
shaft and fitting the encoder shaft into the prepared joint axis
pocket. Friction bolts are installed during this process to both
fix the joint bodies together and adjust friction and action
between the joint surfaces. Wiring was run on the outside of
the model’s surface and affixed using hot glue and purchased
brackets with care taken to ensure there was enough slack
between joint allow a full range of motion (Fig. 7). Once
the puppet is assembled, the joint encoders are aligned to
ensure that the encoder limitations roughly match to the joint
limitations on the target robot.

V. MAPPING PUPPET MOTIONS TO ROBOT MOTIONS

Once RoboPuppet is built, its joint angle values must be
mapped to matching joint angles of the robot and transmitted
to the robot controller. Free software solutions are used to
keep the barrier of entry low. Reading the joint encoder
values was done using the Arduino environment [1] and
all calibration and control tasks were completed using the
Klamp’t software library [11]. We must overcome two chal-
lenges: first, the mapping from encoder values to the robot’s
joint angles must be calibrated; second, direct transmission
of commanded joint angles leads to unsafe behavior. This
section describes our approach to these issues.

A. Calibration

Since the puppet uses linear potentiometers the mapping
from encoder values to joint angles is also linear. To calibrate
it we use a tool that asks the user to pose the puppet



in a number of target robot configurations (two or more)
displayed in a 3D GUI. The correspondence between puppet
pose and robot configuration is then estimated using linear
regression.

Because posing the puppet by hand with visual comparison
is not precise, we consider several techniques to reduce
errors. The first option is to simply use many configurations
and hoping errors average out. This is somewhat tedious
for the user, and and users can make systematic errors.
A better option is to choose target configurations that use
physical correspondences to reduce errors. Examples in-
clude configurations that lie in local minima / maxima of
the gravity potential, configurations that make contact with
natural landmarks, such as the puppet’s table plane or self-
contact, or configurations that line up with natural features
on the robot’s geometry. Due to the absence of strong lines
on the Staübli TX90L we use the gravity- and contact-
based approaches, with configurations that are vertically
outstretched and configurations that touch the table with the
elbow and end effector tip.

We also observed that asking users to simultaneously pose
many joints is harder than just posing one or two joints.
A total of 5 configurations were used in our calibration
program, with at most 2 joints moved between configurations
(Fig. 8).

B. Safety Filtering

Instead of direct transmission of the puppets motion, we
introduce filtering methods for overcoming the following
safety issues:

1) The encoders are relatively low-precision and suffer
from jitter,

2) Commanded values may violate the robot’s joint limits
due to mismatches in the encoders’ joint stops,

3) The puppet may move too quickly for the robot to
catch up,

4) The puppet may cause the robot to self collide or
collide with objects in the remote environment.

These are addressed in sequence by the following steps.
Signal Pre-filtering. Because the puppet’s analog en-

coders are digitized to 10-bit values, the digitized values
tend to oscillate between two adjacent values even when
the puppet is not moving. To smooth these oscillations a
deadband filter of width 1 is applied to the signal, as well
as an exponential filter with smoothing factor 0.5, before
applying the calibrated mapping.

Joint Limiting. The smoothed joint angle command is
capped to lie within the robot’s joint limits.

Dynamic Filtering. The puppet often moves or accelerates
faster than the robot can, so we limit the joint angle command
by the robot’s velocity and acceleration limits. Simple accel-
eration and velocity limiting introduces oscillatory effects
and can even cause the robot to overshoot its joint limits
due to insufficient stopping room. So, we use an online
trajectory optimizer [10] to produce time-optimal velocity-
and acceleration-bounded trajectories that start at the robot’s
current configuration and velocity, and end in the target

Fig. 8. To calibrate the puppet, the user is asked to pose it in a sequence
of configurations.
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Fig. 9. Raw, noisy joint angle commands (Raw input) are passed through a
signal pre-filter (Sig. filter) to eliminate jerks, and then through a dynamic
filter (Dyn. filter) to generate smooth trajectories that respect the robot’s
velocity and acceleration limits.

configuration. This optimization has an analytical piecewise-
quadratic solution and hence can be done quickly enough to
be performed at every time step. The effect is similar to the
trajectory generation approach of [12].

The effects of signal filtering and dynamic filtering are
depicted in Fig. 9.

Collision Filtering. If the robot has a model of obstacles
in its environment, then it can decide whether to accept
the motion to the target configuration via collision detection
(Fig. 11). Specifically, our system first generates a candidate
optimal trajectory to the target configuration, then runs
collision detection on the trajectory (details in [10]). If the
trajectory is collision free, it is accepted and the robot begins
moving along it. If not, it is rejected and the robot continues
along its current trajectory until the next input from the
puppet is received.

VI. PROTOTYPE PUPPET FOR AN INDUSTRIAL ROBOT

Our prototype is a 30% scale controller for the Staübli
TX90L robotic arm. The arm has six degrees of freedom, of
which the puppet includes five. (Fig. 12) At this scale, the



Fig. 10. A first time user controls the Staübli TX90L robotic arm with the ROBOPuppet controller. The user was asked to interact with targets in the
environment (hanging tennis balls and blocks on the table).

Fig. 11. The input sanitizer includes a collision filtering step that prevents
the robot from colliding into known obstacles.

Fig. 12. Five of the TX90L joints were instrumented, and the joint surfaces
of each was selected in such a way to ensure the final controller mimicked
the target robot’s range of motion.

sixth joint is too small to contain the joint encoder assemblies
and, thus, was not included.

CAD Preprocessing. To keep the entry requirements for
creating the controller low, we chose to use simple and free
software (Freecad [6] and TinkerCAD [17]) to modify the
robot’s CAD files. A user with no previous 3D modeling or
CAD experience was able to prepare each part for printing
in approximately 15 minutes. This can be compared to 45
minutes or longer when not using premade pocket geome-
tries.

Printing and assembly. The device was printed on a
Makerbot Replicator 2X using ABS 1.75 mm filament. 3D
printing took 29 hours (Table I) and required 0.483 kg of
filament. Once the parts are printed, the assembly and joint
encoder alignment can be completed in approximately 1.5
hours. Encoders and additional hardware were chosen to be
affordable and readily available. All parts required for the
model can be sourced either from local stores or the internet
and are chosen to be simple to use and wire.

TABLE I
TIME TAKEN FOR MODIFYING THE CAD MESH USING POCKET

GEOMETRIES AND PRINTING. (HOURS:MINUTES.SECONDS)

Link Digital Preprocessing Printing
L1 00:15 05:10
L2 00:20 06:37
L3 - top 00:10 02:57
L3 - bottom 00:10 04:14
L4 00:25 04:03
L5 00:15 04:07
L6 00:10 00:44
TOTAL 01:45 27:52

Printing is by far the most limiting step in our method.
“Prosumer”-grade 3D printers can require near-constant su-
pervision, but rarely require intervention. As a result, most of
the CAD processing and hardware installation tasks can be
completed while waiting for the model to complete printing.

Cost. Table II shows the costs of individual components,
with a total puppet cost of approximately $85. For further
savings, the most expensive component, the Arduino UNO,



can be replaced with a less expensive microcontroller.

TABLE II
COST FOR ALL PARTS AND MATERIALS.)

Equipment Cost Amount Total Cost
5k-Ohm Linear

Taper Potentiometer 3.49 each 5 $17.45
Stranded wire 10.00 kit 0.5 $5.00
Solder 6.49 spool 0.1 $0.65
Solderless Breadboard 8.90 each 1 $8.90
Arduino Uno R3 29.95 each 1 $29.95
ABS filament 0.048 per g 483 $23.18
TOTAL $85.13

Preliminary testing. The device and controller was im-
plemented in a physics simulator [11] as well as on the target
robot, as shown in Fig. 10 and in the supplemental video.
Undergraduate students, seniors, and children as young as 6
years old were able to perform a sequence of trial reaching
tasks without instruction. Our observations are that large
and medium scale movements are easily controllable, and
collision filtering is necessary due to accidental movements,
like dropping the puppet. We also observed that fine-grained
positioning (within millimeters) is not yet possible due to the
low fidelity of the encoders, but we imagine higher grade
encoders could be used, or the puppet could be used in
conjunction with alternative control methods.

VII. CONCLUSION AND FUTURE WORK

This paper presented ROBOPuppet, a technique for build-
ing miniature robot control devices using 3D printing and
low-cost electronics. It consists of a standardized encoder
module, 3D printing procedure, and assembly process that
is generalizable between a wide variety of robots. Novel
methods for calibration and real-time input sanitization for
collision prevention are also presented. A prototype puppet is
presented for a 6DOF industrial robot with a materials cost of
$85. In the near future we will produce another prototype for
a more complex robot, such as the Rethink Robotics Baxter.
We also intend to share parts and modifications [8], with
the goal of cultivating an online community of researchers,
citizen scientists, and robot enthusiasts.

The current iteration of ROBOPuppet has a few limitations
that we intend to address in future work.

• We used encoders with a range of 300◦, which may
not be sufficient to capture the joint range of a given
robot. Multi-turn or continuous encoders could be used
instead.

• Only hinge type joints or joints that can be represented
using rotary motion can be replicated using the current
method. We are exploring solutions for alternative joint
types.

• Robot joint limits could be implemented as physical
stops in the puppet itself, providing immediate feed-
back.

• The current joint encoder assemblies may not fit into
small links, placing a lower bound on the size of the
model. We are currently working on a smaller joint
encoder assembly.

• Mobile robot navigation control may be implemented
with new encoder modules, such as the trackballs of
computer mice.

• The current implementation does not provide haptic
feedback. Standardized motor/encoder assemblies could
provide this functionality.

• Direct control may be inappropriate for robots that must
walk and/or maintain balance (e.g., bipeds). Separate
balance control filtering may need to be implemented.

We also wish to perform user studies to test the hypothe-
sis that ROBOPuppet makes robots easier to control than
alternative input modalities, such as joysticks, mice, and off-
the-shelf haptic devices.
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