
Realization of a Real-time Optimal Control Strategy to Stabilize a
Falling Humanoid Robot with Hand Contact

Shihao Wang1 and Kris Hauser2

Abstract— In this paper, we present a real-time falling robot
stabilization system for a humanoid robot in which the robot
can prevent falling using hand contact with walls and other
surfaces in the environment. Instead of ignoring or avoiding
interaction with environmental obstacles, our system uses obsta-
cle geometry to determine a contact point that reduces impact
and necessary friction. It uses a planar dynamic model that is
appropriate for falling stabilization in the robot’s sagittal plane
and frontal plane. The hand contact is determined with an op-
timal control approach, and to make the algorithm run in real-
time, a simplified three-link robot model and a pre-computed
database of subproblems for the hand contact optimization are
adopted. Moreover, if the robot is not leaning too far after
stabilization, we employ a heuristic push-up strategy to recover
the robot to a standing posture. System integration is performed
on the Darwin-Mini robot and validation is conducted in several
environments and falling scenarios.

I. INTRODUCTION

Humanoid robots can exploit legged locomotion to step
over obstacles, walk on uneven terrains, and reduce energy
consumption by employing passive dynamics [1]. However,
they have a high risk of falling due to the natural instability of
bipedal locomotion [2]. External factors such as unevenness
in the ground, malfunctions of the balancing controller,
unexpected pushes, and nontrivial disturbances can cause
a robot to fall as well. Because of severe damage may be
caused to the robot from falling, many strategies have been
proposed to recover the fall at the instant of falling [3], [4], or
to minimize the damage when an inevitable fall is triggered
[5], [6]. Protective stepping is the most widely used strategy.
This method plans future capture footsteps for the robot to
stop or slow its rate of fall. However, protective footsteps
may not be feasibly taken if the robot were to be used in
a cluttered environment with obstacles such as walls and
tables. These environmental obstacles can occupy positions
of the planned footsteps and preclude the robot from being
recovered from fall. However, the existence of environment
obstacles provides the robot with a novel strategy for fall
recovery. Inspired by human’s natural reaction to make hand
contact with the nearby wall to arrest the fall after being
pushed, our previous work [7] proposes that humanoid robots
can adopt hand contact for fall recovery as well. However,
this strategy was only evaluated in simulation, and physical

*This work was supported by NSF grant NRI #1527826
1Shihao Wang is with the Department of Mechanical Engineering

and Materials Science, Duke University, Durham, NC 27708, USA
shihao.wang@duke.edu

2Kris Hauser is with the Departments of Electrical and Computer
Engineering and Mechanical Engineering and Materials Science, Duke
University, Durham, NC 27708, USA kris.hauser@duke.edu

Fig. 1: Illustrating how the hand of a humanoid (ROBOTIS Darwin
Mini [8]) can be used to stabilize itself on a wall and to reduce
falling damage on flat ground.

robots require handling real-time constraints and integration
with other components of fall recovery, such as fall detection.

This paper presents the implementation of a real-time fall
recovery system that uses hand contact with the environment
to prevent a humanoid robot from falling (Fig. 1). This
system is capable of 1) fall detection and fall direction
prediction, 2) using hand contact to stabilize the robot, 3) if
physically possible, utilizing a push-up motion to recover to
the standing posture. Fall detection is based on the computa-
tion of the orbital energy [9] in the falling plane. The decision
about where and how to place hand contact is determined via
trajectory optimization, which is a modified version of prior
work [7] that achieves better real-time performance. Finally,
if the robot is not tilted too far, a heuristic push-up recovery
mechanism is implemented for the robot to bring itself back
to a standing posture.

We implement the system on a small humanoid platform
augmented with additional sensors. It consists of four com-
ponents:
• Base robot ROBOTIS Darwin Mini
• Microcomputer Raspberry Pi 3
• IMU Adafruit BNO055
• Touch Sensor ROBOTIS TS-10

The implementation of falling stabilization must cope with a
number of issues like limited computational power and time
delays from communication and optimization. Experiments
demonstrate that the stabilization system helps prevent the
robot from falling in real-time in environments with and
without walls, and with waist-height obstacles.

II. RELATED WORK

The problem of humanoid robot falling has been con-
sidered by several authors. Overall, related work can be
classified into three main categories: fall detection, push
recovery, and fall mitigation.

Fall detection plays an important role in stabilization and
it is a prerequisite for the proposed system. Kalyanakrishnan
and Goswami propose a machine learning based method to
conduct the falling classification while satisfying the tradeoff
between fast trigger time and high accuracy [10]. Renner and
Behnke uses a model-based abnormality detection method
with a specific gait [11]. Karssen and Wisse propose a fall
detection method based on the magnitude of the deviation of
the current robot state from the commanded robot state [12].
Ogata and his colleague propose an abnormal detection
method and predicted zero moment point (ZMP) to evaluate
the risk of falling [13]. Our fall detection technique embraces
the idea of capture point and uses the orbital energy as the
falling index [3], [14].

Push recovery strategies aim to balance the robot with
the internal joints control such as ankle strategy or hip
strategy [15], or the use of swing foot for stepping to reduce
the extra momentum, and can be employed in a unified
framework with walking [3]. Besides falling in sagittal
plane, push recovery strategies have also been studied for
omni-directional falling [16]. However, these techniques do
not consider environmental constraints, and inside buildings
or other crowded environments could run the robot into
obstacles. A recent trends in hand contact strategy address
the environment obstacles in fall stabilization process [17],
[18]. However, these two works oversimplify the contact
mode and neglect the friction constraint and the change of
the robot state due to the contact impulse.

Fall mitigation strategies reduce the impulse or damage at
collision by altering how the robot falls. Fujiwara et. al. [5]
allows the robot to land on the robot knees or arms. A similar
trajectory planning approach is proposed in [19]. Ha and
Liu [20] minimize the falling damage using multiple contact
points and optimize a sequence of contacts using a variant
of a 2-D inverted pendulum model. Goswami proposes a
tripod contact strategy to reduce the robot’s kinetic energy
during the fall before the impact [6]. However, the issue with
each of these techniques is a long computation time, reported
to be over 1 s and in some cases 15 s [5], [19], [20], [6].
Our technique uses a simplified 3-link dynamics model and
precomputed databases to achieve fast optimization.

Heuristic approaches have been used in past work to
achieve real-time performance. Tam and Kottee propose
the use of walking sticks to prevent forward falling [21].
Their works uses forward fall detection and a heuristic
quadrupedal posture to stop the robot from falling. In Yi
et al, a machine learning approach is used to select between
predefined push recovery controllers for a small humanoid
robot, including use of the ankle, hip, or stepping [4]. A
more comprehensive learning approach was taken in Kumar
et. al., in which reinforcement learning is used to find a full
body fall-recovery policy that can use protective stepping or
hands, and this outperforms direct optimization by orders of
magnitude [22]. However, all of these approaches work only
on flat ground. In our work, the shape of the environment is
not constrained and its geometric shape is used by the falling
controller to select an appropriate limb and contact point.

Fig. 2: Flowchart of the proposed system.

Falling
Detected?

System State
Monitor

End

No

Begin

CPU Controller

Motor Controller

Robot Joint Motors
Falling Trajectory

Optimizer

Pre-Computed
Walking Gait

Trajectory

 Joint Trajectories

Acutal Joint Angles
and Angular Speed

Commanded Joint Angles
and Angular Speed

Acutal Joint Angles
and Angular Speed

Robot State

Commanded Joint
 Angles and
 Angular Speed

Fall Indicator
 Initial State

Optimized Joint
 Trajectories

IMU

Eular Angles
Eular Angular Velocity

Pre-Heuristic
Generator

Pre-Heuristic
Trajectories

Fig. 3: Diagram of the hardware and control flow of the proposed system.

III. METHOD

A. Summary

The system that we implement in this paper is illustrated in
Fig. 2. Our method is model-based and makes the following
assumptions:

1) The falling plane, which is the plane containing the
center of mass velocity and the gravity vector, is limited
either to the sagittal plane or the frontal plane.

2) The shape of the nearby environment in the falling plane
is known.

3) Centers of masses and inertia matrices of the robot’s
links are known.

4) The hand makes contact on the environment at a single
point of contact, and this point of contact is inelastic.

5) In the push-up recovery stage, the robot elbow can
generate enough momentum to bring the robot away
from the wall.

With these assumptions, the proposed system monitors the
state of the robot, stabilizes the falling robot after a fall is
detected, and allows a push-up mechanism to recover the
robot to a standing posture if the robot is not tilted too
far. The diagram of the hardware and control flow of the
proposed system is in Fig. 3.

B. Hardware Setup and System Integration

1) Darwin Mini Robot: Our experimental platform is
the ROBOTIS Darwin Mini, a small humanoid robot with
16 actuated joint motors (Dynamixel XL 320). The motor
encode can read the motor’s present angle and angular
velocity. These motors can be directly controlled by the
OpenCM 9.04 C board featuring a 32-bit ARM Cortex-
M3 processor. The baudrate between the board and motor

is configured to be 1Mbps. This board supports the serial
data transmission via Tx, Rx and Bluetooth (BT210) with
a maximum baudrate of 115200bps. Two ROBOTIS touch
sensors are connected to this board to monitor the status of
the robot hand contact.

2) Raspberry Pi 3: Raspberry Pi 3 (Rpi3) is chosen as the
main CPU due to its size, cost and sufficient computational
capability. Raspbian Jessie is the OS for Rpi3. To increase
the efficiency of the data transmission between the robot and
Rpi3, the two microcontroller boards are connected in both
Bluetooth (OpenCM sending data to Rpi3) and Tx, Rx (Rpi3
sending data to OpenCM). This central computational unit
undertakes all the calculation including fall detection and
pre-impact optimal controller computation.

3) IMU-Adafruit BNO055: The IMU provides readings of
Euler angles and angular velocities at 100Hz. However, the
default connection port between the Rpi3 and BNO055 has
been occupied for the data transmission between RPi3 and
OpenCM. An additional Arduino UNO board is used to read
the IMU data and send the data via Universal asynchronous
receiver-transmitter (UART) to Rpi3 with a 115200 bps.

C. Fall Detection

Fall detection is a critical component of fall recovery.
The earlier an inevitable fall is accurately detected, the
more likely the robot will be stabilized. We use an inverted
pendulum model for fall detection due to its simplicity to
satisfy the strict real-time requirement. This pendulum is
modeled from the foot edge where the robot rotates around
to the center of the mass of the robot (Fig. 4). The foot edge
location is estimated via kinematics given the current IMU
and joint encoder readings.

In the falling plane, if the robot is not falling, the kinetic
energy of the robot at each time t is less than the critical
kinetic energy Tcrit which is the minimum kinetic energy
that the inverted pendulum needs to move from its current
angle position to its unstable equilibrium point.

Therefore,
Tcrit = MgL(1− cos(γ)) (1)

where M is the total mass of the robot, g is the gravitational

g
z

(a) Falling in Sagittal Plane

g
z

(b) Falling in Frontal Plane

Fig. 4: Falling detection with inverted pendulum model in sagittal
plane and frontal plane. The red arrow denotes the velocity at the
center of the mass.

constant, L is distance from the foot edge to the center of
mass of the robot and γ is angle between the pendulum and
the vertical axis in the falling plane, .

Meanwhile, the kinetic energy Tt at each instant of time t
is

Tt =
1
2

ML2
ζ̇

2 +
1
2

IF ζ̇
2 (2)

where ζ is the angle between the pendulum and the hori-
zontal axis, ζ̇ is the derivative of ζ and IF is the equivalent
moment of inertia at the rotation axis in the falling plane. If
Tt > Tcrit , then the robot is going to fall.

D. Modeling the Falling Trajectory

Following [7], a rigid three-link model is used to approx-
imate the robot dynamics in the falling plane (Fig. 5). This
model is chosen for the following reasons:

1) It is computationally light to satisfy the real-time com-
putation requirement,

2) It is complex enough to allow for the use of pre-impact
inertia shaping to reduce impact.

3) It models the use of post-impact compliance to achieve
closed loop stability.

We divide the falling motion into two phases: 1) pre-
impact, where the robot is pivoting about an edge of its foot
and its hand is brought to touch the environment, and 2) post-
impact, where the hand is in contact with the environment
and any residual velocity is dampened.

After a fall has been detected, the pre-impact optimal
controller will be computed to bring the robot hand into
contact with environment obstacles. However, this compu-
tation requires knowledge of the robot state at the instant of
falling. The robot state is the state angles (θ ,α,β) and state
angular velocities (θ̇ , α̇, β̇) where θ is the angle between
the ground and stance leg, α is the angle between the stance
leg link and the torso and β is the angle between the torso
and contact arm. For a given falling plane, α and β are
associated with actuated robot joint motors so the values of
α, α̇,β and β̇ are accessible with motor encoders. However,
θ is an underactuated angle and cannot be directly measured.
Therefore, an IMU is attached to the torso link to realize the

A

C
D

B
a

b

IMU

Fig. 5: Three-link model used in this work, illustrated in post-impact. The
robot is divided into three blocks, the stance leg, torso, and contact arm,
each of which is modeled as a rigid link. The free arm and swing leg are
assumed to be fixed to the torso.

computation of θ . Based on the kinematics of the robot,
θ = 270◦− (φ +α)

θ̇ =−(φ̇ + α̇)
(3)

where φ is the roll angle in the frontal plane or the pitch
angle in the sagittal plane.

E. Optimal Stabilization with Hand Contact

The optimal stabilization process is divided into two
subprocess: Pre-impact optimal contact and Post-impact
compliant stabilization.

For the pre-impact system, our algorithm uses a direct
shooting method to find an optimal controller to bring the
robot into contact with the environment while minimizing
the performance index function. This function describes the
probability that at least one of the following three catas-
trophic events occurs:
Event 1: The impact from collision damages the robot.
Event 2: The foot contact point slips.
Event 3: The hand contact point slips.

The first event occurs when the impact I exceeds the
critical amount Icrit needed to damage the robot. The second
and third events occur, respectively, when the necessary
sticking friction at the hands and feet µA and µD of a hy-
pothetical trajectory exceed the actual environmental friction
coefficients µ f oot and µhand . The terms I, µA, and µD are
assumed deterministic functions of a given trajectory, while
Icrit , µ f oot , and µhand are unknown, normally distributed
random variables.

The performance index is chosen to be
J(qqqtr, q̇qqtr,uuutr) = 1−P(I ≤ Icrit)P(µA ≤ µ f oot)P(µD ≤ µhand)

(4)
where qqqtr is the configuration trajectory, q̇qqtr is its time
derivative, and the control trajectory is uuutr. Lower values
are better. The probability of each event is calculated using
the cumulative distribution function (CDF) of a normal
distribution with some given mean and standard deviation.
Specifically, for each of the three values X , P(y ≤ X) is 1
minus the value of the CDF(y) of a normal distribution model
X ∼ N(Avg(x),Std(x)2) with mean Avg(x) and standard
deviation Std(x). Here, Avg(x) and Std(x) can be coarsely
estimated by a human engineer (lower values lead to a more
conservative controller) or measured empirically.

In the shooting method, uuutr is taken as a piecewise constant
control sequence of length N, with each segment lasting for
dt. With given control sequence, an integration of the pre-
impact dynamics is conducted until the collision is detected.
The Lagrangian dynamics of the pre-impact system is

D(qqq)q̈qq+C(qqq, q̇qq)+G(qqq) = Buuu (5)
where D(qqq) ∈ R3×3 is the generalized inertia matrix.
C(qqq, q̇qq) ∈ R3×1 is the centrifugal and coriolis forces matrix.
G(qqq) ∈ R3×1 is the generalized gravity matrix. uuu ∈ R2×1 is
the joint torque vector for α and β , and B∈R3×1 is the input
matrix mapping the joint torques to generalized coordinates.

An impact mapping function maps the pre-impact state
to the post-impact state and enables the computation of the

collision impulse whose magnitude I is used to evaluate the
probability of robot damage [23].

The post-impact system is in fact a four-bar linkage system
with only one degree of freedom and can be stabilized with
one control. Equation of motion for post-impact system is

D(qqq)q̈qq+C(qqq, q̇qq)+G(qqq) = B′uβ +E(qqq)T
λλλ (6)

where E(qqq) is the jacobian matrix of the constraint equations
with respect to the state variables and λλλ is a 2×1 vector of
Lagrange multipliers. After the feedback linearization, (6) is
expressed a linear function of uβ :

β̈ = fβ (β , β̇)+gβ (β , β̇)uβ (7)

where uβ is the torque applied at joint C, gβ (β , β̇) is the term
associated with the control uβ and fβ (β , β̇) is the remaining
term.

Let

β̈ =−Kβ̇ (8)

where K is the derivative gain of this stabilizing controller.
This value is chosen such that ∀|β̇ | ∈ [β̇min, β̇max], |Kβ̇ |
remains within the joint acceleration bound β̈max.

This controller yields an analytic expression of how the
post-impact system evolves

β (t) = β
++

β̇+

K
(1− e−Kt) (9)

where β+ is the post-impact angle, β̇+ is the post-impact
angular velocity.

Then the necessary sticking friction coefficients can be
computed along the post-impact joint trajectories and used in
the performance index to evaluate the probability of contact
slipping. We use a precomputed database of the necessary
sicking friction coefficients at all possible post-impact state
to reduce the computation time and realize the real-time
optimal controller computation. For more information about
the control sequence initialization and necessary sticking
friction coefficients computation, please refer to [7].

F. Pre-Heuristic Trajectory Execution

Based on the empirical observations of the computational
time of the optimal controller, it takes around 100 ms to
calculate the optimal control sequence and joint trajectories
for robot hand and hip with numerical integration. Those
trajectories will be used as references for robot joint motors
to track to reach an optimal contact. However, for a small
size humanoid, the falling time can be as short as 400 ms.
It is possible that the joint takes more than 300 ms to move
from the falling time angle position to the optimal angle
position. As a consequence, the robot would have already
fallen to the ground before the optimal contact can be made.
Thus, to save the time of tracking optimal joint trajectory,
the robot should execute a pre-heuristic trajectory after the
fall has been detected. The method to compute this trajectory
is using the numerical integration of the pre-impact system
with the actuated joint torques determined by a heuristic
inverse dynamics approach. The dynamics equations of the

two actuated joints are[
α̈

β̈

]
=

[
−kPα(α−αre f)− kDα α̇

−kPβ (β −βre f)− kDβ β̇

]
(10)

where the values of kPα ,kPβ ,kDα ,kDβ ,αre f and βre f are
determined heuristically.

This pre-heuristic trajectory stretches the robot arm near
a possible optimal arm position to reduce the tracking time
while the optimal controller is being computed. After the
latter has been computed, the robot joint will switch to track
the optimal joint trajectory. To transit smoothly from the
pre-heuristic trajectory to the optimal joint trajectory, the
final state on the pre-heuristic trajectory should be the initial
state of the optimal joint trajectory. The whole pre-heuristic
trajectory execution time tpre is the maximum time (150 ms)
that our algorithm needs to finish computing the optimal
controller and its value can be determined empirically. The
optimal joint trajectories will not be use until tpre time has
elapsed from the instant of falling.

G. Push-up Recovery

After fall stabilization, the robot will remain in a steady
state and can either 1) wait to be relocated by human to start
a new gait, or 2) recover to an upright position by pushing
off of the wall. We use a flexing motion of the elbow to allow
the robot to gain sufficient momentum to recover a standing
posture.

Suppose the hand contact point remains fixed during the
push recovery process. Again we apply a three-link model to
analyze this push recovery motion, where the three links are
the body link (foot rotational point to the shoulder), upper
arm (shoulder to elbow) and lower arm (elbow to hand), θ ∗

is the angle between the ground and the body link, α∗ is the
angle between the body link and upper arm and β ∗ is the
angle between the upper arm and the lower arm (Fig. 6). The
mass of the arm is assumed negligible compared to the mass
of the body so the behavior of the robot can be approximated
as an inverted pendulum.

To gain the momentum needed to move away from the
environment support, the robot can first bend its elbow to
reach an angle β ∗min and then stretch the elbow angle to its

a
b

*

*
*

A

B

C

D

E

Fig. 6: Three-link model used for push-up recovery. The robot is divided
into three blocks, the body, upper arm, and lower arm, each of which is
modeled as a rigid link. The upper arm is assumed to be fixed to the body.
The two black dashed lines are the stance leg link and torso link from the
post-impact model.

initial value β ∗ = 180◦ with a commanded angular velocity
β̇ ∗cmd . In this paper, we use a heuristic approach to determine
this distance range, β ∗min and β̇ ∗cmd . However, this mechanism
works under a constraint of the robot tilt angle in the falling
plane. If that angle is beyond a feasible range, the push up
will not be able to generate enough momentum for the robot
to recover.

IV. EXPERIMENTAL EVALUATION

We evaluate our system on 8 scenarios. The robot parame-
ters used are shown in Table I, and Table II shows the weight
coefficients and heuristic values used in the experiment. Note
that the robot has no visual sensors; its local environment
geometry relative to the robot’s initial pose is given as input
to our system, and the wall shape in the the falling plane is
determined once a fall is detected.

The eight scenarios illustrate forward and sideways falling
on four environments. Vertical 1 and Vertical 2 are vertical
walls at distance 0.19 m and 0.22 m, respectively. Table a
and Table b use a flat surface at height of 0.05 m. Ground
a and Ground b use the flat ground surface. Push-Up a and
Push-Up b use a vertical wall at distance 0.19 m and the
robot remains stationary in the former case. In all case except
Push Up a, the robot performs a treadmill like walking gait
which is walking without globally moving forward. This gait
is chosen to reduce the complexity of the determination of
falling direction when a push is given because the forward
walking momentum may lead to a false fall detection on
sagittal plane given a push in frontal plane. We leave the
problem of falling plane detection during navigation for
future work.

In all cases except for Table and Ground, the control
is initialized with heuristic target values αre f = αre f 1 and
βre f = βre f 1. In Table and Flat, we use αre f = αre f 2 and
βre f = βre f 2 as given in Tab. II. The robot state at the instant
of falling for each experiment is in Tab. III. For each robot
state, an optimal controller is computed in real-time to bring
the robot into contact with the environment walls. Tab. IV
shows the time for optimization (Comp. time), the time at
which contact is made after fall detection (Contact time),
the predicted collision impulse, necessary sticking friction
coefficients at contact points (µA and µD), and optimized
probability of failure. In all cases the computation time is
within 150 ms and the optimal contact is made within 400 ms.
The next four columns of this table show that besides the
three extreme cases (Vertical b, Ground a and Ground
b), our optimal controller manages to confidently reduce the
probability that a catastrophic event would occur.

Fig. 7 illustrates the trace for each experiment. In each
example, the robot is stopped using hand contact with the

TABLE I: Model Parameters

Mass (kg) Length (m) Moment of Inertia (kg ·m2)

Leg 0.12 0.125 3.1677e-04
Torso 0.53 0.070 8.8277e-04
Arm 0.05 0.100 4.4271e-05

TABLE II: Misc. Coefficients and Heuristic Values

Controller gains Target values Failure parameters

kPα
250 αre f 1 5π/6rad Avg(I) 0.45N · s

kPβ
250 βre f 1 5π/8rad Std(I) 0.1N · s

kDα
20 αre f 2 π/2rad Avg(µA) 0.6

kDβ
20 βre f 2 3.6π/5rad Std(µA) 0.1

K 14 β ∗min 5π/6rad Avd(µE) 0.5
β̇ ∗cmd 10rad/s Std(µE) 0.1

TABLE III: Robot State at the Instant of Falling

Problem θ (rad) α (rad) β (rad) θ̇ (rad/s) α̇ (rad/s) β̇ (rad/s)

Vertical a 1.48 2.61 0.52 -0.62 0.19 0.00
Vertical b 1.43 2.59 0.52 -1.09 -0.14 0.00
Table a 1.39 2.60 0.52 -3.22 -0.18 0.00
Table b 1.66 2.89 0.17 -2.71 0.24 0.66
Ground a 1.41 2.65 0.52 -2.41 0.14 0.00
Ground b 1.69 2.96 0.14 -3.24 -0.81 1.85
Push Up a 1.47 2.67 0.52 -0.54 0.14 0.00
Push Up b 1.49 2.62 0.52 -0.55 -0.19 0.00

environment obstacles. Comparing Vertical a to Vertical b,
the robot reaches its hand towards the wall to arrest itself
from falling and reaching is further for walls at further
distance. Comparing Table a and Table b, our method can
exploit the flat table surface to stabilize the robot and extend
the falling stabilization strategy to both the sagittal plane
and frontal plane instead of the sole 2-D sagittal plane.
Comparing Ground a and Ground b, our method finds the
optimal contact with a bent-over posture in which the robot’s
center of mass remains relatively high above the ground. This
result is consistent with prior work on optimal fall mitigation
strategy to minimize collision damage [24]. Push Up a and
Push Up b demonstrate that our proposed push-up strategy
can recover the robot to a standing posture and enable the
robot to continue on its previous task interrupted by the push.
Fig. 8 and Fig. 9 demonstrate this recovery process. Fig. 10
shows a representative diagram of the timing of when the fall
is detected, when the pre-heuristic trajectory is executed, and
when the optimal trajectory is executed to demonstrate the
real-time nature of the proposed strategy.

V. CONCLUSION

We presented a system for stabilizing a falling robot using
hand contact on environmental features. It is based on a

TABLE IV: Model-based optimization results for each experiment.
Objective values are shown as a % of the uncontrolled value.

Problem Comp.
time
(ms)

Contact
time
(ms)

Impact
(N · s)

µA µE Optimized P
failure (%)

Vertical a 23 366 0.184 0.503 0.102 17.04
Vertical b 113 358 0.326 0.804 0.429 98.56
Table a 29 386 0.326 0.338 0.304 13.40
Table b 110 391 0.206 0.226 0.110 0.73
Ground a 144 361 0.494 0.351 0.116 67.32
Ground b 54 385 0.527 0.299 0.269 78.10
Push Up a 119 353 0.191 0.548 0.068 30.76
Push Up b 83 368 0.196 0.527 0.083 23.66

(a) Vertical a: Init (b) Vertical a: Mid (c) Vertical a: End

(d) Vertical b: Init (e) Vertical b: Mid (f) Vertical b: End

(g) Table a: Init (h) Table a: Mid (i) Table a: End

(j) Table b: Init (k) Table b: Mid (l) Table b: End

(m) Ground a: Init (n) Ground a: Mid (o) Ground a: End

(p) Ground b: Init (q) Ground b: Mid (r) Ground b: End

Fig. 7: Experiments of optimal controllers for examples Vertical 1
to Ground b. For each row, the left figure is the robot state at the
instant of falling denoted as Init, the middle figure is the transition
motion denoted as Mid and the right one is the stabilized motion
denoted as End.

(a) Falling detected (b) Pre-impact contact (c) Stabilization

(d) Elbow bending (e) Elbow releasing (f) Standing posture

Fig. 8: Representative traces of Push Up a case recovery motion

(a) Falling detected (b) Pre-impact contact (c) Stabilization

(d) Elbow bending (e) Elbow releasing (f) Standing posture

Fig. 9: Representative traces of Push Up b case recovery motion

0 100 200 300 400 500 600
Running time (ms)

0.5

1

1.5

2

2.5

3

Jo
in

t t
ra

je
ct

or
ie

s
(r

ad
)

3(t)
,(t)
-(t)
Heuristics

tpush tfall detected topt-complete thand contact

Fig. 10: A representative diagram of the timing using Push Up b case.
Vertical dashed lines denote the timing of when the robot is pushed tpush,
when the fall is detected tfall detected, when the computation of optimal
controller is completed topt-complete and when the contact is established
thand contact. Green curves are the heuristic trajectories used in the pre-impact
optimization.

three-link dynamic model and optimal control principles
to choose a hand contact point. It also overcomes several
practical challenges regarding computation and communi-
cation delays. Experimental results on the Darwin Mini
platform, augmented with additional sensors, show that the
proposed falling stabilization system can stabilize the robot
with several walls, environmental obstacles, and falling di-
rections. Moreover, a push-recovery strategy can in some
cases recover the robot to a standing posture.

There are two directions we hope to explore in the
future. First, we have not yet addressed fall detection while
forward walking, or the high-level decision about which
fall recovery strategy – hand contact, inertia shaping, or
protective stepping – should be used upon fall detection.
Second, we hope to formulate the push-up recovery method
into a more analytical determination whether recovery is
feasible. If push-up recovery is infeasible, perhaps the robot
could perform a movement that lowers it to the ground in a
controlled fashion before recovery from a fallen position.

REFERENCES

[1] J. E. Pratt and G. A. Pratt, “Exploiting Natural Dynamics in the
Control of a Planar Bipedal Walking Robot,” in Proceedings of the

Thirty-Sixth Annual Allerton Conference on Communication, Control,
and Computing, no. September, 1998.

[2] T. McGeer, “Stability and control of two-dimensional biped walking,”
in Technical Report 1., Center for Systems Science, Simon Fraser
University, Burnaby, B.C., Canada, 1988.

[3] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture Point:
A Step toward Humanoid Push Recovery,” in 2006 6th IEEE-RAS
International Conference on Humanoid Robots. IEEE, dec 2006.

[4] S.-J. Yi, B.-T. Zhang, D. Hong, and D. D. Lee, “Online learning of
low dimensional strategies for high-level push recovery in bipedal
humanoid robots,” in IEEE International Conference on Robotics and
Automation. IEEE, may 2013.

[5] K. Fujiwara, S. Kajita, K. Harada, K. Kaneko, M. Morisawa, F. Kane-
hiro, S. Nakaoka, and H. Hirukawa, “Towards an Optimal Falling
Motion for a Humanoid Robot,” in 6th IEEE-RAS International
Conference on Humanoid Robots. IEEE, dec 2006.

[6] S.-k. Yun and A. Goswami, “Tripod fall: Concept and experiments of
a novel approach to humanoid robot fall damage reduction,” in IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
may 2014.

[7] S. Wang and K. Hauser, “Real-time stabilization of a falling humanoid
robot using hand contact: An optimal control approach,” in 2017
IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids), Nov 2017.

[8] Darwin Mini, ROBOTIS INC Std. [Online]. Available:
http://www.robotis.us/robotis-mini-intl/

[9] S. Kajita, T. Yamaura, and A. Kobayashi, “Dynamic walking control
of a biped robot along a potential energy conserving orbit,” IEEE
Transactions on Robotics and Automation, vol. 8, no. 4, 1992.

[10] S. Kalyanakrishnan and A. Goswami, “Learning to Predict Humanoid
Fall,” International Journal of Humanoid Robotics, vol. 08, no. 02,
jun 2011.

[11] R. Renner and S. Behnke, “Instability detection and fall avoidance for
a humanoid using attitude sensors and reflexes,” IEEE International
Conference on Intelligent Robots and Systems, 2006.

[12] J. Karssen and M. Wisse, “Fall detection in walking robots by multi-
way principal component analysis,” Robotica, 27 (2009), 2008.

[13] K. Ogata, K. Terada, and Y. Kuniyoshi, “Real-time selection and
generation of fall damage reduction actions for humanoid robots,” in
IEEE-RAS International Conference on Humanoid Robots. IEEE, dec
2008.

[14] S. Kajita and K. Tani, “Study of dynamic biped locomotion on
rugged terrain-derivation and application of the linear inverted pen-
dulum mode,” in Proceedings. 1991 IEEE International Conference
on Robotics and Automation, 1991.

[15] B. Stephens, “Humanoid push recovery,” in 7th IEEE-RAS Interna-
tional Conference on Humanoid Robots, Nov 2007.

[16] M. Missura and S. Behnke, “Omnidirectional capture steps for bipedal
walking,” in 13th IEEE-RAS International Conference on Humanoid
Robots (Humanoids). IEEE, oct 2013.

[17] V. Samy, K. Bouyarmane, and A. Kheddar, “Qp-based adaptive-
gains compliance control in humanoid falls,” in IEEE International
Conference on Robotics and Automation, May 2017.

[18] E. M. Hoffman, N. Perrin, N. G. Tsagarakis, and D. G. Caldwell, “Up-
per limb compliant strategy exploiting external physical constraints for
humanoid fall avoidance,” in 13th IEEE-RAS International Conference
on Humanoid Robots, Oct 2013.

[19] Jiuguang Wang, E. C. Whitman, and M. Stilman, “Whole-body
trajectory optimization for humanoid falling,” in American Control
Conference (ACC). IEEE, jun 2012.

[20] Sehoon Ha and C. K. Liu, “Multiple contact planning for minimizing
damage of humanoid falls,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, sep 2015.

[21] B. Tam and N. Kottege, “Fall Avoidance and Recovery for Bipedal
Robots using Walking Sticks,” dec 2016.

[22] V. C. Kumar, S. Ha, and C. K. Liu, “Learning a Unified Control Policy
for Safe Falling,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), mar 2017.

[23] Y. Hurmuzlu and D. B. Marghitu, “Rigid Body Collisions of Planar
Kinematic Chains With Multiple Contact Points,” The International
Journal of Robotics Research, vol. 13, no. 1, feb 1994.

[24] A. Goswami, S.-k. Yun, U. Nagarajan, S.-H. Lee, K. Yin, and
S. Kalyanakrishnan, “Direction-changing fall control of humanoid
robots: theory and experiments,” Autonomous Robots, vol. 36, no. 3,
mar 2014.

