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Abstract— The classical Capture Point (CP) technique allows
biped robots to take protective footsteps in case of a push
or other disturbance, but only applies to flat terrain and
a horizontally-moving Center of Mass (CoM). This paper
generalizes the Capture Point technique to arbitrary terrains
and CoM paths. Removing the CoM path constraint leads
to an infinite number of Capture Points, each corresponding
to a different path. A numerical algorithm is presented that,
given an uneven terrain, enumerates Capture Points and their
respective CoM trajectories. It is suitable for real-time usage
as it produces all capture points in less than a millisecond on
a standard PC. Proof-of-concept results are also demonstrated
on a humanoid robot in a dynamic simulator.

I. INTRODUCTION

Maintaining balance in the presence of disturbances is one
of the main challenges in humanoid robotics. Small distur-
bances can be compensated through active feedback control
of joint torques while maintaining the same stance leg, based
on simplified models that consider linear momentum [1], [2]
or angular momentum [3], [4]. However, larger disturbances,
such as a strong push, require a reactive step. As a result,
methods to choose foot placements for reactive steps has
become a topic of recent interest.

Several approaches have been presented to address this
problem. For example, one approach uses Model Predictive
Control (MPC) to generate walking patterns or to determine
adaptive foot positioning under several constraints including
Center of Mass (CoM) objectives [5], [6]. It has been also
suggested that using MPC, several steps can be planned
ahead to recover balance [7], [8]. Proper ground reaction
forces can also be enforced by locally modifying the planned
foot landing position [9], and disturbances can be absorbed
by modifying future steps, combining disturbance suppres-
sion with reactive stepping [10]. Another popular approach
to determine a stepping point is the so-called Capture Point
(CP) [11], which has been used for push recovery [12],
walking pattern generation [13], and reaching of far objects
via the integration in a whole body control framework [14].

However, these existing approaches make several simpli-
fying assumptions for computational reasons that limit their
applicability to general terrains. First, they select a footstep
locomotion assuming the ground is perfectly flat. It may
still be possible to apply them to flat terrain with small
irregularities by applying local modifications to adapt the
foot orientation to the terrain. But this approach is unsuitable
for very uneven terrain, which often requires a change in
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Fig. 1: Example of an uneven terrain where the robot must carefully choose
a reactive footstep if it is laterally pushed.

footstep to adapt to large irregularities. Moreover, existing
approaches usually assume that a fixed path for the CoM
(e.g., a horizontal line) is given, which ignores the capability
of the robot’s legs to extend and contract in order to adapt
to changes of terrain height, and to help reduce momentum
and absorb impact. A recent work, [15], addresses the latter
problem using capture points but it does not give a method
for planning footstep positions.

This paper proposes a new methodology to generalize the
Capture Point for balance recovery in two ways: first, CoM
trajectories are allowed to describe more general curves such
as a line with a slope and a parabola; second, the landing
terrain is not constrained to a horizontal surface allowing us
to handle arbitrary uneven terrain such as the one shown in
Fig. 1. To achieve this, this paper presents a 2D nonlinear
inverted pendulum model which extends the standard linear
inverted pendulum (LIP) [16] model to the case of nonlinear
trajectories. Whereas in the linear case the computation of
the CP is analytical, in the general case there is no closed
form solution, and we resort to a numerical approach. We use
a direct shooting method to solve the differential equations,
and we present methods for (i) solving for a Capture Point
given a CoM trajectory, (ii) solving for a CoM trajectory
that makes a footstep location a Capture Point, and (iii)
calculating a discretized set of CPs, and a CoM trajectory
for each CP, on a given terrain. A single degree of freedom
in the CoM path is sufficient, and in this paper we use the
family of quadratic curves.

The proposed algorithm is fast and can produce a set of
CPs for an arbitrary polygonal 2D terrain in less than a
millisecond on a standard PC. This paper presents numerical
examples of the algorithm, as well as a proof-of-concept
demonstration on a simulated Hubo-II+ robot off balance,
using our algorithm to find a Capture Point on uneven terrain.
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Fig. 2: Nonlinear Inverted Pendulum (NIP) in 2D, with fixed base and
motion constrained to the curve z(x).

II. INVERTED PENDULUM AND CAPTURE POINT MODELS

In the standard linear inverted pendulum (LIP) model [16],
the motion of the Center of Mass (CoM) is assumed to
be purely horizontal. Combined with an assumption of
flat ground, the Capture Point [11] can be determined in
closed form. However, this model unnecessarily constrains
the height of the CoM, which restricts the robot from using
vertical displacement to conform to the terrain, to dissipate
momentum, or to maintain rigidly extended legs during
walking.

This section presents the Nonlinear Inverted Pendulum
(NIP), a generalization of the LIP model that allows the CoM
to move about an arbitrary nonlinear curve. For background
it also reviews the LIP model, which specializes NIP to linear
(non-horizontal) CoM motion; and the analytical definition
of a Capture Point for the LIP model. In future sections we
will present methods for calculating the generalized Capture
Point.

A. Inverted Pendulum Model

The inverted pendulum is a simplified 2D model that is
widely used to approximate the dynamics of a biped robot. It
only considers the motion of its CoM in a plane in response
to a single point of contact, leading to a 2D state space that
is more mathematically and computationally tractable than
the full dynamics of the robot.

The model describes the dynamics of the robot under the
following assumptions.
• The total mass of the robot is represented as a point

mass m located at its Center of Mass (CoM).
• The robot legs are massless, attach at the CoM, and can

extend arbitrarily.
• One foot of the robot makes point contact with the

ground (this point forms the pendulum base).
• A force may be applied directly along the axis of the

leg (which forms the pendulum rod). No perpendicular
forces or torques may be applied at the contact.

• Friction is sufficiently high to keep the point contact
from slipping.

• The motion of the robot CoM is constrained to lie along
a curve z(x).

Let the CoM position be r = (x, z) and the pendulum base
position be rb = (xb, zb) with respect to some reference
frame, as Fig. 2 shows. Let fg = (0,−mg) be the gravity

force, where g is the acceleration of gravity, and fc be the
force acting on the CoM due to the contact reaction. Since
there is a single contact point, fc is oriented in the direction
of the massless rod and can be represented as

fc = (r− rb)f

where
f =

‖fc‖
‖r− rb‖

is a scalar that depends on the magnitude of the contact force
and the CoM position. The total force acting on the CoM is
the sum of both the gravity and contact forces ftot = fc + fg
and its components are given by

ftot =

[
(x− xb)f

(z − zb)f −mg

]
. (1)

Provided that the CoM motion lies along the 2D curve
described by z(x), as depicted in Fig. 2, its vertical velocity
is ż = dz

dx ẋ, and its acceleration is given by

r̈ =

 ẍ
dz

dx
ẍ+

d2z

dx2
ẋ2

 . (2)

Replacing (1) and (2) in the dynamic equation of motion
ftot = mr̈, it can be shown that the horizontal dynamics of
the 2D nonlinear inverted pendulum is:

ẍ =
(x− xb)

(
g + ẋ2 d2z

dx2

)
(z − zb)− (x− xb) dz

dx

(3)

and its vertical dynamics is:

z̈ =
(z − zb)ẋ2 d2z

dx2 + (x− xb)g dz
dx

(z − zb)− (x− xb) dz
dx

(4)

with (z − zb)− (x− xb) dz
dx 6= 0 in both (3) and (4).

The model is ill-defined (i.e., does not yield a unique
solution) when the tangent to the curve at point (x, z)
coincides with the line from the pendulum base to that
point. Specifically, this occurs when dz

dx = z−zb
x−xb

, or both
x = xb and z = zb. Let these tangency points be (xti , yti)
as Fig. 3 shows. A physical intuition is that at this instant
the velocity of the CoM is parallel to the pendulum rod, and
the magnitude of the contact force dictates the magnitude
of acceleration (ẍ, z̈). To resolve this ambiguity, we might
either assume the contact force or the acceleration to be zero.
However, we will later show that this case can be safely
ignored for a certain class of CoM paths.

B. Motion Constrained to a Line

In the case of linear CoM motion it is possible to solve
the second-order differential equations (3), (4) analytically.
Although the LIP, as typically presented, usually considers
only horizontal CoM motion, this section derives a closed-
form solution that also applies when the slope is nonzero.

Given the initial conditions (x0, z0) for the position of
the CoM, and (ẋ0, ż0) for its velocity, the line constraining
the motion is represented as z(x) = k(x− x0) + z0, where
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Fig. 3: At (xti , zti ), the pendulum trajectory z(x) becomes tangent to
the pendulum rod generating an undefined dynamic behavior. The blue line
depicts the trajectory, and the dashed blue line, the trajectory it would have
if the motion continued.

k = ż0
ẋ0

is the slope. Setting dz
dx = k and d2z

dx2 = 0 in (3) and
(4), one obtains horizontal dynamics

ẍ =
(x− xb) g

k(xb − x0) + z0 − zb
(5)

and vertical dynamics

z̈ =
(x− xb) g k

k(xb − x0) + z0 − zb
. (6)

It is observed that z̈ = ẍ k, which also follows from the
second time derivative of the line equation. The horizontal
motion (5) can be rewritten as

ẍ− wx = −wxb (7)

where
w =

g

k(xb − x0) + z0 − zb
Using the line equation, the denominator of w can be written
as z(xb)−zb, i.e., the CoM height when it is above (or below)
the pendulum base. Assuming z(xb) > zb, (i.e., w > 0) the
solution to (7) is

x(t) =
1

2
e
√
wt

(
x0 − xb +

ẋ0√
w

)
(8)

− 1

2
e−
√
wt

(
xb − x0 +

ẋ0√
w

)
+ xb

with its first time derivative equal to

ẋ(t) =
1

2
e
√
wt
(√
w(x0 − xb) + ẋ0

)
(9)

+
1

2
e−
√
wt
(√
w(xb − x0) + ẋ0

)
.

The vertical trajectory can be found integrating the vertical
dynamics or, more easily, using the line equation directly.
When z(xb) < zb (i.e., w < 0), the solution to (7) is
oscillatory.

C. Definition of Capture Point

The Capture Point (CP), introduced in [11] and also
referred to as the Extrapolated Center of Mass [17], is the
point on the ground ξ = (ξx, ξz) where the robot should step
to in order to come to a complete rest, via some prescribed
motion model.

In the case of a nonlinear inverted pendulum model,
inspection of (3) and (4) shows that a stationary point of
this system can only be reached when the system evolves
towards ẋ = 0 and x = xb as time approaches infinity:

lim
t→∞

x(t) = xb and lim
t→∞

ẋ(t) = 0. (10)

That is, the pendulum velocity at infinity must be null and
the horizontal pendulum trajectory must converge to xb (the
pendulum stops above its base). In this case, the Capture
Point is given by the pendulum base: (ξx, ξz) = (xb, zb).
It is important to note that this limit does not hold for any
arbitrary (xb, zb).

D. Analytic Capture Point for LIP on Flat Ground

The classic Capture Point can be analytically solved given
a linear CoM motion and a horizontal terrain (i.e., the value
of zb is fixed). In the standard case where the final CoM lies
above zb, the horizontal velocity limit in (10) holds when
the coefficient of the unbounded term e

√
wt in (9) becomes

zero; that is,
√
w(x0−xb) + ẋ0 = 0. Replacing the value of

w, this condition becomes

(x0 − xb)
√

g

k(xb − x0) + z0 − zb
+ ẋ0 = 0

and solving for xb, this leads to

ξx = x0 + k
ẋ20
2g

+ ẋ0

√
z0 − ξz
g

+

(
kẋ0
2g

)2

(11)

which is the horizontal coordinate of the Capture Point with
fixed height ξz = zb.

We note that when w < 0, the pendulum dynamics is
oscillatory and no point can satisfy the conditions in (10)
leading to a Capture Point, unless a damping factor is added.
In this case, the final CoM would be below the pendulum
base (over-hanging pendulum) and any base point would
be a suitable Capture Point. It is unrealistic to use such
solutions using typical biped feet, but hypothetically such
solutions may be interesting if the robot were permitted to
use hands (such as the overhead straps used by standing bus
passengers).

The Capture Point is typically described with the CoM
following a horizontal trajectory (k = 0). But we observe
that the CP may be changed by choosing alternate slopes, or
terrains of alternate height. Fig. 4 depicts the forward travel
distance of the CP, ξx for different slopes k and landing
terrain heights ξz . As the slope decreases or the terrain height
increases, the forward travel distance becomes shorter. It has
also been shown that the Capture Point changes significantly
if the pendulum length is assumed to be constant [18].

Capture Point variability is important to consider, because
the CP must be intercepted using the swing leg, and shorter
travel distances may lead to faster balance recovery. More-
over, far capture points may simply be unreachable. The
problem, however, is that all but one line of varying slope
k do not match the initial conditions of the CoM velocity
k = ż0/ẋ0. As a result, to exploit CP variability, the CoM
will need to travel on a nonlinear curve.
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Fig. 4: Horizontal distances of Capture Points with varying terrain heights
and CoM paths slopes k. The example shown uses x0 = 0, ẋ0 = 1.0, z0 =
1.0. The yellow line (k = 0) is the CP under horizontal motion, as presented
in [11]. (This figure best viewed in color)

III. PROPOSED ALGORITHMS

To allow a CoM to move on a nonlinear path, we resort to
numerical methods. We found that a shooting and bisection
method is reliable and can calculate solutions in a few
iterations, typically without getting stuck in local minima.
Moreover, the method can find Capture Points on a terrain
modeled as a non-horizontal line segment, which cannot be
achieved with the classical Capture Point formulation. The
chosen trajectory is quadratic since it is the least polynomial
degree that allows for one extra degree of freedom when
respecting the initial velocities.

Based on the shooting method, we present three algorithms
for working with capture points under a 2D NIP model.

1) Calculate a Capture Point (ξx, ξz) given a CoM path
z(x), up to a desired tolerance.

2) Calculate parameters of a parabolic CoM path z(x) =
ax2 + bx + c that make a footstep location (xb, zb) a
capture point (i.e., (ξx, ξz) = (xb, zb)) up to a desired
tolerance.

3) Enumerate all candidate Capture Points and their
parabolic CoM paths for the terrain, given some dis-
cretization resolution.

The common input to each method are the CoM initial
conditions (x0, z0), (ẋ0, ż0), and a polygonal representation
of the terrain. The algorithms are also given bounds on final
height of the CoM above the terrain:

zmin ≤ z(xb) ≤ zmax (12)

These constraints give an approximation to kinematic reach-
ability.

A. Capture Point Computation by Shooting and Bisection

Without loss of generality, it can be assumed that xb > x0
and ẋ > 0 since, if xb < x0, there is no way the pendulum
can stop, and if ẋ < 0 a simple inversion of the x axis

can be done. A procedure to find a Capture Point that
satisfies the conditions (10) in finite time is based upon the
following observation. Given the initial conditions and curve
parameters, the following three cases arise.

1) Overshooting: if the horizontal component of the pen-
dulum base xb is too close to the initial CoM horizontal
position, the pendulum will overshoot it. In this case
xf > xb, where xf is the final x.

2) Undershooting: if xb is too far, the CoM will not be
able to reach it and it will begin to move backwards.
In this case, ẋf < 0.

3) Capture Point: if xb is located at the Capture Point,
the CoM will stop above it.

An illustration of these cases is depicted in Fig. 5.
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Fig. 5: Idea of the numerical approach. The initial position of the CoM is at
(x, z) = (0, 0.8). In (a), the pendulum base is too close so the pendulum
will overshoot the CP. In (b), the base is too far, the pendulum does not
have enough energy to reach the CP and will start moving backwards. In
(c), the CoM stops above its base, which becomes a CP.

The basic idea of bisection is to find an interval of points
on the terrain in which closer points overshoot and farther
points undershoot, and then to repeatedly bisect that interval.
This repeats until a capture point is obtained within some
tolerance. Namely, we use the tolerance:

|xb − xn| < δp and |ẋn| < δv (13)

where δp and δv are arbitrarily small tolerances and n ∈
2, · · · , N is a time less or equal to the maximum allowable
time (if the condition is satisfied at n < N , it will also be
true at k such that n < k ≤ N ). A maximum number of
steps imax is also defined but the algorithm finds a solution
typically in around 10 to 15 steps.

Since the terrain is modeled as a set of line segments,
we can initialize intervals of candidate capture points to the
extrema of each segment. Let the line segment describing
the terrain have extremes P1 = (x1, z1) and P2 = (x2, z2),
such that x0 < x1 < x2 as Fig. 6 shows. Hence, the search
interval is initialized to x1 < xb < x2. Later we will present
methods for pruning the search interval even further.

The algorithm is shown in Alg. 1. It also requires a maxi-
mum integration time parameter, specified by the number of
discrete samples N as well as the state x0 = [x0 ẋ0 z0 ż0]T .
The current search range is [p0, pf ] and is bisected at each
outer loop until the tolerance is reached, or up to Nit steps
have been reached. The function dynamics provides an
integration step of the NIP dynamics. If at some point the
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Fig. 6: By choosing xb between x1 and x2 (or a reduced subset), and
updating zb according to the terrain, a CP can be found. The minimum
allowable height of the pendulum CoM with respect to the terrain is zmin.

pendulum is overshooting (xn > xb), it will continue over-
shooting; and if at some point it is undershooting (ẋn < 0),
it will continue undershooting. In either case, the integration
can be halted early. The value of xb is updated using a
bisection of the interval [p0, pf ], and then the value of zb
is updated using the terrain equation.

Since we integrate the dynamics numerically, the precision
of the final results are constrained by the sampling time dt
as well as the tolerances δp, δv . The algorithm is resolution-
complete in the sense that it will find a CP if it exists for
the given CoM trajectory. If a result is returned, the result
also respects the CoM kinematic limits.

Algorithm 1 Compute CP for a CoM path and a terrain

Input: z(x), x0, P1, P2, N
Output: (ξx, ξz)

1: p0 ← x1, pf = x2
2: xb ← pf
3: for i← 1, Nit do
4: zb ← z(xb)
5: for n← 1, N do
6: xn, ẋn ← dynamics(xn−1, zn−1, xb, zb, z, g, dt)
7: if (|xb−xn| < δp and |ẋf | < δv) (tolerance reached)

then
8: return (xb, zb), “found”
9: else if xn > xb (overshoot) then

10: if i = 1 then
11: return (xb, zb), “not found”
12: end if
13: p0 ← xb
14: break
15: else if ẋn < 0 (undershoot) then
16: pf ← xb
17: break
18: end if
19: end for
20: xb ← p0+pf

2
21: end for
22: return (xb, zb), “not found”

B. Initializing the Bisection Interval

To initialize the bisection procedure with as small an
interval as possible, we identify a region for potentially valid
Capture Points. For a curve z(x) constraining the trajectory

of the pendulum, let (xti , zti) be points of tangency along the
curve that intersect the pendulum base (xb, zb) and therefore
satisfy the condition

dz

dx

∣∣∣
x=xti

=
zti − zb
xti − xb

. (14)

These points generate an undefined dynamic behavior in (3)
and (4). Given the pendulum base (xb, zb), and the initial
CoM position (x0, z0), let F(xb, zb) ⊂ R2 be a set with
components (x(t), ẋ(t)) such that, ∀t > t0:

1) ẋ(t) ≥ 0
2) x(t) ∈ [x0, xb]
3) xti /∈ [x0, xb], ∀xti , if they exist.

Starting with the initial conditions (x0, z0), (ẋ0, ż0) at t = t0,
with ẋ0 > 0, the point (xb, zb) is a candidate for a Capture
Point if (x, ẋ) ∈ F(xb, zb). It will be a Capture Point if (10)
is satisfied in finite time.

C. Making a Given Point a Capture Point via Parabola
Search

A given point (xb, zb) on a landing terrain can be turned
into a Capture Point if the proper path for the pendulum CoM
is chosen. We use a quadratic path with variable curvature
(defined by a) in an attempt to obtain a Capture Point. Like
before, we use a bisection approach, but the search is along
the value of a. As values of a decrease, the parabola curves
downwards, and the pendulum gains energy overshooting the
desired xb. As a increases, the trajectory curves upwards,
the pendulum loses energy and eventually begins to move
backwards.

Let the curve constraining the motion of the inverted
pendulum be given by the following parabola

z = a(x− x0)2 + b(x− x0) + z0. (15)

The velocity of (15) is ż = (2a(x − x0) + b)ẋ which
constrains the value of b given the initial conditions. That is,
b = ż0

ẋ0
is a parameter completely determined by the initial

velocity. Hence, the curvature a is the only free parameter
of the parabola.

During the search, special care should be taken to deal
with the ill-defined situation where the denominator is zero,
since it would lead to erroneous results. A straightforward
geometric analysis using (14) and (15) shows that for the
quadratic curve there exist two points of tangency which
occur at

xti = xb ±
√

(xb − x0)2 +
z0 − zb + b(xb − x0)

a
(16)

Let these points be ordered as xt1 < xt2 . When the trajectory
defined by the dynamics of the quadratic system reaches one
of those points, the dynamic equations become undefined.
Therefore, the forward shooting should not continue after
these values. The value of the parameter a that makes the
square root in (16) equal to zero is acr = zb−z0−b(xb−x0)

(xb−x0)2

where bcr = zb−z0
xb−x0

and can be obtained using basic ge-
ometry. Using a simple geometric analysis of the quadratic



curve, it can be shown that the quadratic dynamics behavior
is defined beforehand in the following cases.

- If a = acr, the dynamics is defined while x(t) < xb.
- If both b > bcr and a < acr, or both b < bcr and
a > acr, the dynamics is defined while x(t) < xt1 .

- If both b > bcr and a > 0, or both b < bcr and a < 0,
the dynamics is defined while x(t) ∈ [xt1 , xt2 ].

In all other cases, the quadratic dynamics is well defined in
all the points belonging to the trajectory x(t) ∈ R.

To further reduce the search, a minimum and maximum
values for the curvature, amin and amax, can be readily
found from (15) (using some initial position x0, z0) based
upon the minimum and maximum height, zmin and zmax,
that the CoM can have above the landing point (xb, zb).
These limits above the terrain are schematically shown in
Fig. 7 and are determined by the kinematic constraints of
the robot. In case no a in that range exists, then there exists
no feasible CP given the kinematic constraints.

(xb,zb)

zmin

zmax

amax

amin

Fig. 7: By choosing the proper curvature for the parabola, the point (xb, zb)
can be turned into a CP. The search for the curvature value (a) will be in the
range [amin, amax], which is determined by the allowable heights zmin

and zmax.

Alg. 2 lists the algorithm to find the parabolic curve (15)
and is very similar to the algorithm used in the previous
case, except the desired footstep location (xb, zb) is given
rather than the path z(x). The value of a is updated using a
bisection between the maximum and minimum values. The
condition for ending the iterations is the one in (13). Since
the initial value of a is the maximum allowable, if it leads
to an overshoot, there is no way to increase it more (to find
a Capture Point), and no feasible CP exists. However, if a
CP exists, the algorithm will find it.

D. Enumerating All Capture Points and CoM Paths
Given a terrain modeled by a line segment, described by

its extremes (x1, z1) and (x2, z2), it is possible to find all
Capture Points on it corresponding to parabolic paths, as a
generalization of the previous algorithm. In this case, the
curvature of the parabola (a) can be geometrically bounded
using the limits of the landing terrain, as Fig. 8 depicts.

The steps to find CPs and their respective CoM trajectories
in this case can be summarized as:

1) Find the curves (described by the value of a) to
make the segment extremes x1, x2 become Capture
Points using Alg. 2. If successful, proceed to step 2).
Otherwise:

Algorithm 2 Making a point become a Capture Point

Input: (xb, zb), x0, N
Output: a

1: Compute b = ż0
ẋ0

, amin, amax

2: a← amax

3: for i← 1, Nit do
4: for n← 1, N do
5: xn, ẋn ← dynamics(xn−1, zn−1, xb, zb, a, b, g, dt)
6: if (|xb − xn| < δp and |ẋf | < δv) then
7: return a, “found”
8: else if xn > xb then
9: if i = 1 then

10: return a, “not found”
11: end if
12: amin ← a
13: break
14: else if ẋn < 0 then
15: amax ← a
16: break
17: end if
18: end for
19: a← amin+amax
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20: end for
21: return a, “not found”

(x1,z1)

(x2,z2)

amax

amin

zmin

zmax

Fig. 8: Given a terrain, the curves (defined by a) that will generate Capture
Points along the terrain are searched.

- If no feasible CP exists at x1 due to a final CoM
too high over x1, then no feasible CP exists in the
segment (since, as x1 increases, a also increases).

- If no feasible CP exists at x2 due to a final CoM
too low over x2, then no feasible CP exists in the
segment (since, as x2 decreases, a also decreases).

- In other cases, move the extremes (increase x1 or
decrease x2 along the terrain) and repeat step 1).

2) Increase the lowest point by ∆x and use Alg. 2 on this
new point to find the curve.

By repeating the last step, the output of the approach are CPs
along the terrain with their respective CoM trajectories. It has
been empirically found that as xb moves farther, the value
of a needed to make it a Capture Point also increases. This
observation is used as a heuristic to hasten the computation
in step 2.

More complex terrains can be composed of a set of line



segments, treating each line segment separately and finding
CPs on each segment. In this case, the CPs and the CoM
trajectories computed at the boundary of the contiguous
terrain segment can be used to hasten the search. For a long
terrain the reachable leg space is also used to discard points
that are far away from the initial CoM position.

IV. RESULTS

The proposed algorithms for the computation of the Cap-
ture Point have been tested for several initial conditions
and parabolic curves. An example, using initial conditions
(x0, z0) = (1.0, 0.8), (ẋ0, ż0) = (1.0, − 0.4) and a
sampling time dt = 0.04 s, with a final time tf = 2 s is
shown in Fig. 9. In this case, an exhaustive computation of
the Capture Points has been undertaken, for different terrain
heights zb ranging from -0.5m to 0.5m. The final pendulum
CoM height is represented as zf . Each point in the graph
constitutes a Capture Point for the given terrain height and
the given curve. Both graphs depict the same points but they
are joined differently, based either on the same curve a or the
same terrain height zb. In these figures, the height limits of
the CoM have been removed in order to illustrate the broad
range of behaviors that could be obtained, but in practice
these limits should be adjusted to match the kinematic limits
of the robot. For different initial conditions, similar results
are observed, with larger values of xb generally obtained for
larger initial velocities.

A simulation using a 2D inverted pendulum is shown in
Fig. 10 which depicts an uneven terrain and the pendulum in
its initial position. The computation time is around 0.1 ms
(in C++) for the shown terrain, which can be considered real
time for current humanoid robots’ control loop. The approach
in Sec. III-D computes the feasible CPs (shown in red) given
some feasible final heights for the CoM to achieve (which
would depend on the robot kinematics). Fig. 10 also shows
blue points on the ground and their respective final CoM
height to emphasize that, although CPs exist in those regions,
they are not feasible.

To show the application in a robot, a simulation was done
using the model of a humanoid robot and the dynamic sim-
ulator Klamp’t (http://klampt.org). The robot starts
in single support as Fig. 11 shows. Then an external force is
applied at the chest of the robot from right to left (viewer’s
point of view). This force destabilizes the robot and it starts
“falling”. At this moment, a finite-horizon falling trajectory
is estimated considering the time it would take the foot to
get to the ground. This falling trajectory estimation, based
on an inverted pendulum describing a circle, acts as a
prediction to account for the required swing time. Then,
several Capture Points are computed on the given ground
using different curves, and the foot is set to move to the
Capture Point closest to the robot. Although the model is 2D,
the simulation is 3D since the constraining plane is taken to
be in the direction of the force. For this problem the CoM
was assumed to move only in the plane containing the lateral
and vertical direction; in general, movement can be restricted
to the plane through the CoM and perpendicular to both the

Fig. 9: Capture Points computed for values of a ranging from −4 to 20,
and height of the terrain zb from −0.5 to 0.5. (This figure best viewed in
color)

Fig. 10: Feasible Capture Points and some trajectories needed to achieve
them given a terrain and certain initial conditions (left). The CoM height
at the end of the trajectory is used as one of the criteria to determine the
region that lies within the robot kinematic capabilities (right).



Fig. 11: Snapshots of the robot recovering after a lateral push by computing
the Capture Points on an uneven terrain and stepping on one of them.

gravity vector and the CoM velocity. Also, a variation of the
initial push magnitude determines different initial conditions
and the computed point changes accordingly.

V. CONCLUSIONS

This paper has presented a nonlinear inverted pendulum
(NIP) model, relaxing the horizontal CoM assumption used
by the linear inverted pendulum model. Based on the NIP
model, several Capture Points can be found depending on the
CoM trajectory. Linear and quadratic trajectories have been
considered, but it is possible to apply the proposed numerical
approach to other types of trajectories. More importantly,
given an uneven terrain, the proposed numerical approach is
able to find Capture Points on the terrain, and the respective
CoM trajectory, which cannot be achieved with previous
approaches.

Future work will address the Capture Point using a nonlin-
ear 3D model, as well as the effects of angular momentum
on the computations. Capture Point based walking can be
explored based on the proposed approach. We are also
interested in implementing the current method on a real
humanoid robot, and possibly using other limbs (e.g., hands)
to aid in balance recovery.
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