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1. WHATISY[ ! a? Q¢

YEFYWNRAaQ [202Y20GA2Yy | YR askayopdnktairde rdsplatiommisdftyiayelpsclaget 2 2 6 2 E
for robot modeling, simulating, planningptimization, and visualizatiorit aims to providean accessible, wide

range of programming tools fdearning robotics, analyzing robots, developing algorithms, and prototyping

intelligent behaviors. It has particular strengtinsrobot manipulation and locomotion

Historically, it began developmeat Indiana University since 2009 primarilyeagsearchplatform. Beginningin

2013it has been used iaducationat Indiana Univerty and Duke Universitysince then, ihas been adopted by

other labs around the world, such as Stanford, University of Pisa, and Worcester Polytechnic Itistingdeen

used in several realorld projects, including the DARPA Robotics Challenge, dmiizking Challenge (2015

HaMc 00X GKS Lwh{ Hnmc w202 DNI}ALAY3I YR al yALWdzZ A2y /

This manual is meant to givehight S@St NRBIF RYF LJ 2F (i Enfshdéukiohhk ddilsiQeied & dzy OG A 2 Y |
replacement forthe detailed APl documentation.

1.1.FEATURES

1 Unified C++ and Python package for robot modeling, kinematics, dynamics, control, motion planning,

simulation, and visualization.

Supports legged and fixdshsed robots.

Interoperable with Robot Operating System (Ra®) Open Motion Planning Library (OMPL).

Many samplingbased motion planners implemented.

Fast tajectory optimization routines.

Reaitime motion planning routines.

Forward and inverse kinematics, forward and inverse dynamics

Contact mechanics computatiof®rce closure, support polygons, stability of rigid bodies and actuated

robots)

1 Planningnodels arefully decoupled from simulatiomodels Thishelpssimulateuncertaintyand
modeling errors

1 Robust rigid body simulation with triangle mesh / trianglesmeollisions.

Simulation of PID controlled, torque controlled, and velocity controlled motors.

I Simulation of various sensors includicegneras, depth sensors, laser range findgggspscopes,
force/torque sensors, and accelerometers.
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1.2.CURRENTLYBPORTEBLATFORMS

1 *nux environments
1 Windows
T MacOS

Please let us know if you are able to compile on other platfdmesder tohelp us supporthemin the future

1.3.COMPARISON TRELATEPACKAGES



ROS (Robot Operating Systeiajp middlewaresystemdesignedfor distributed controlof physical
robotst | YR Y f I Y Libé intardperdble &ith #\asoRs ROS software packages can replicate

YIye 2F (GKS FdzyOlGAzya 2F YEIYLQG 6KSYy dzaSR G(G23SGKSN

difficult sincethese tools are not as tightly integrated as they are’ £ | YROQ tiasrhited support for
legged robotsand is poorly suited for prototyping highte feedback control systemROS ifieavy
weight, has a steep learning curve especially for-@@studnts, and iflsonot completely cross
platform (only Ubuntu is fully supported)

OpenRAVE (Robotics and Animation Virtual Environmesimilar toY f | YahdQvés developed
concurrently by a similar group at CMOpenRAVE has more sophisticated margpah planning
functionality. Does not support planning for legged roboksit simulation is possible with some effort
Simulationmodels areoften conflatedwith planningmodelswhereas inY f | YHejQaile fully decoupled.
OpenRAVE is no longer activalypgorted.

Gazebo, Webots, YREP, etare robot simulation packages built off of the same class of rigid body
simulations ay f I YTy hhavenore sophisticatedsensor simulation capabilitiesleaner APlsand
nicer visualizationbut are typically builfor mobile robotsand havdimited functionality formodeling,
planning and optimizationY f | ‘alsd®as improved mesimesh collisiorhandlingthat makes collision
handling much more stable

14211 ¢ Q{ b92? Lb *ndr

Version history:

0.7 Latest version(3/24/2017)
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Improved simulation stability, including adaptive time stepping and instability detection/recovery.

The proprietary.tri geometry file format has been replaced with the Object File Format (OFF) for better
compatibilitywith 3D modeling packages

Simulated visual, depth, and laser range sensors are now fully supported.

ROS sensor simulation broadcasting is enabléddampt/IO/ROS.h.

World XML files can now be saved to disk.

Robot sensors and controllers can be attached directly to a robot mesiledy thesensors / controller

LINR LIS NI A S & .rdbyr .uidfGie. NP o2 (G Qa

The motion planning structure in KrisLibrary has been completely revamped in preparation for support of
optimal and kinodynamic planning, but this should be a mostly transpafenty’ 3S G2 Y I YLIQ
The Python interfaces now better organizedHoweverthe module structure is incompatible with code
developed for versions 0.6.2 and eatrllarparticular, math modulesictorops , so3, se3) are now in the
klampt.math  subpackage, and visualization modulggrgram , glrobotprogram , etc) are now in the

klamptvis ~ subpackage.

Custom Python simulations of sensors, actuators, and force appliers that work on fast simulation rates are
easier to integrate with slower conttdoops in thelampt.sim.simulation module.

Revampedind enhanced Python visualization functionality in khenptvis  module. Multiple windows,
simultaneous viewports, trajectory visualization, custonvisualization plottingautomatic viewport
determination, and thumbnail savireye now supported.

Cartesian trajectory generation, file loading utilities are added to Python.

0.62 (7/31/2016)
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New Python APIs for visualization

Geometry caching helps load times and memory usage for large scenes
A gbbal IK solvehas been added to thBython API

ROS broadcasting / subscribing is enabled in the C++ API.

0.6.1(3/21/2015)

|l

=

Added functionality in Python API to load/save/edit resoureeanipulate transforms and robot
configurations via widgetghange apearance of objectandrun programs through Qt.

Removedhe Python collide module. All prior functionality is now placed in the Geometry3D class in the
standard klampt module.

Realtime planning interface has been greatly simplified.

The MilestonePathCadroller class will be deprecated, use PolynomialPathController instead.

Minor bug fixes

0.6.(7/4/2014)

=4 =4 =4 4 -4 4 -8 A -4 -

CMake build systemmakes it easier tduild across multiple platforms

Easy connections with external controbetiia ROS or a serigrotocol

More userfriendly Qt application front ends

More demos, example code, and tutorials

Direct loading of URDF filadth <klampt> XML tag

More calibrated robots: Baxter, Roboti&iBger adaptive gripper

Unification of locomotion and manipulation via the GenaatiRobot mechanism

Fixed build for Cygwin

More sophisticated loggingapabilitiesn SimTes{contacts, commanded/actual/sensed paths)
Miscellaneous debuggirtgroughout

0.5. Initial releasg11/17/2013)

1.5.CONTRIBUTORS

Kris Hauser has been the primary maintainer throughout the project. Other major contributors iRkdcatbn
Tritell, Jingru Luand Alessio Rocchi

Adam Konnecker, Cam Allen, Steve Kuznetsoe helped with théviac build

As an opersource project, we wleome contributions and suggestions from the community.



2. DOWNLOADINGND BJILDINGY[ ! at Q¢

Yt | Yslplibliclyavailableviathe git repository ahttps:/github.com/krishauser/Klampt/The command

git  clone https://github.com/krishauser / Klampt
will download the required files.
You will also need to obtain the following dependencighich may already be installed on your machine

CMake (version >= 2.6)

GLUT

GLPKthe GNU Linear Programming Kit

Python if you wish to use the Python bindin¢fested only on Python 2.6 & 2.7

Boost C++ Libraries

(recommended) Assimp, if you wish to load STL, DAE and other geometry file formats. (Only OBJ and OFF
are natively supported in Klampt.)

(recommended Qt4, if you wish to use nicer GUIs for the core applications.

1 (recommended PyOpenGL is required for visualizatibtigs://pypi.python.org/pypi/PyOpenGL/3.0)2

Qt4 and PyQt are optional for scripted cesce editing. Python Imaging Library (PIL) is required for saving
screenshots to disk.

=A =4 =4 -4 -4 4
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2.1.LINUXLIKE ENVIRONMES

Building dependenciedrirst, the dependencies museldownloaded and builtGLUT and GLPK must fiost
installed in your library path€hangento the Klampt/ Library folder and unpackrisLibrary, TinyXML, GLUI, and
h59 dzaAy3 inka uthack YdepsiR. Alér configuring the dependencies described beloythey
can be built using the commarnthake deps 6.

To configure the dependenciespnsider the following notes:

1 KrisLibrarymay need tdbe configured for your particular systeffiryrunningcmake- gui andchanging
the Advanced variables.

1 By default, we compile ODE in double floatpmint precision. The reasdor thisis that a1 someLinux
systems, ODE becomes unstable in single flogiwigt precision and may crash with assertion failures.
This may be changed on other systems, if you wish, by tog@IdfgDOUBLB=or1 in
Klampt/ Library/ Makefile. Note: if youhavealready built ODE atthen laterchange its precision, you
must do a clean build of ODE as well as@Make cache

Enabling Assimp suppofbptional). To load a larger variety of 3D meshes, Klamp't can be configured to use the
Asset Importer Assimp) library. Once Assimp.0.1270is installed on your systenf Klampt/Library / assimp--
3.0.1270-sdk or /usr/lib/libassimp.so exist9, KrisLibrary and Klampt should automatically detect it when built.

Run/ al 18 (2 0dzif Rswdnm¥d @l G2 PIRXMRS GKS YE I YLQG YI{STAf Sa

Buildingstatic library andapps.¢ KS a Gl G A O f Andak&l KNEBa mpithéimdni dpps todndild afed W
RobotTest, SimTest, and RobotPas& LJingka [takget] Q BHulld the target.


https://github.com/krishauser/Klampt/
https://pypi.python.org/pypi/PyOpenGL/3.0.2
http://assimp.sourceforge.net/

Building Python bindingsOnce theY f | Ystali@ library is built, th&ython bindings irklampt/Python / klampt
can be buildzi A ryfalle pyithon ¢ ® ¢ 2 Ady@t Grhoflufed YilK S & 2 dzNJ t 8 G Kaké LI- O 383z
python -install €.

IMPORTAT: You mustes up Python to be able to find the shard&trary files for external dependencies
Otherwise, you will get errors importing theobotsim modulewhen callingmport klampt . To do this, you may
either:

1. Setthe LD_LIBRARY_PATH environment biari@ include the locations of theriyiXML, ODE, and
(optionally) Assimp shared libraries. These will be .so (or DLL) files.

2. ORmove theshared library fileanto your shared library path

3. ORon Linuxlike systemsedit /etc/ld.so.conf as appropriate anthien run Idconfig (as sudo)

Platform-specificinstall scripts

These commands work from a clean install of Ubuntu 12.04

sudo apt - get freeglut3 freeglut3 - dev glpk python - opengl
ohLIWiA2yFfY (2 SylotS !aaAYLl YS&AK IsXal2NIAy3IZ 06STF2NB OF f 1
sudo apt - get install libassimp - dev]

cd Klampt

cd Library

make unpack - deps

make deps

cd ..

cmake .

make all

sudo make python - install

Building documentation¢ 2 o6dzZAf R G KS Yt I YLIQG / bb |t makRdBdaMSy i GA2y d
Klampt/ ®ma¥e python -docsQ gAff o0dzAf R (GKS tedkKz2y !'tL R20dzySydl GA2

2.2.WINDOWS

Prebuilt binary executdbs and static libraries for VS2005NB | @F A f | 6t S 2 Wl R3INd IOY¥ Qi 6 €
be builtfrom sourcewith Visual Studio 2012 (or Visual Studio 2010)%&d above

Step by step instructions to install th€++applicationsfrom binaries

Fromhttp://klampt.orgz R2 gy f 2F R I yR Ndzy GKS 2Ayoun YTl YLQG AyadltfsS
C++ API, make sure tetghe appropriate installer for your Visual Studio version.

Step by step instructions to install the Python AfPdm binaries

1. Visithttps://github.com/krishauser/Klampt y R Of A O1 &/ f 2ogv$hedhyfcrebnSa | G2 Lk © C2
AyaiaNHzOGAzya G2 Of2yS GKS Yl YLIQG DAG NBLRZAAG2NE

2. Install Python 2.7.x frorhttp://www.python.org/getit/ . Make sure to get the Win32 version even if you
have a 64bit machine.



http://klampt.org/
https://github.com/krishauser/Klampt
http://www.python.org/getit/

3. AddC\Python27to your PATH environment variable. (Right click My Comput@&roperties>
Advanced System Settings 9 Y GANR Y YSy (i + I;dNRArhthont7 & 12y R KISLIWIS YR YW NR

4. Install PyOpenGL frofttps://pypi.python.org/pypi/PyOpenGL/3.0.@sing the Win32 installer.

5. Install the glut32.dll file fronittp://user.xmission.com/~nate/glut.htminto your SyswOW64directory
(if your machine is 686it, most newer machines) @ystem32directory (forolder 32-bit machines)

6. Fromhttp://klampt.org, download and install thg/in32 Klamp't Pthon 2.7 bindings

7. Done.Asatest,dzy WOYRQ FNRBY (KS ail NampryiadzBemOsK angrahS
python gltemplate.py ../../data/athlete_fractal_1.xml

Pl
>
Z
&
O«
[t
N

To build your ownC+# LILJ A OF GA2ya GKIFG Ayl G2 Yl YLQG

1. Follow the instructions to install the Capplicationsrom binaries

2. Clone the KrisLibrary Git repository frditips://github.com/krishauser/KrisLibrarto the
Klampt/Library folderas the target location.

3. Fromhttp:/klampt.orgz R2gyf 2F R GKS | LIINRBLINAI GS 2Ayon Y YLQU
version (both Release and Debug are recommended). UnpacKiatopt/Library .

4. Inyour own CMake piject, set KLAMPT_ROOT and BOOST_ROOT to the appropriate paths and put the

following lines into your CMakeLists.{glong with whatever other lines are needed to build your project)

SET (CMAKE_MODULE_PATH "${KLAMPT_ROOT}/CMakeModules")
FIND_PACKAGE(Klampt REQUIRED)
ADD_DEFINITIONS(${KLAMPT _DEFINITIONS})
INCLUDE_DIRECTORIES(${KLAMPT_INCLUDE_DIRS})
TARGET_LINK_LIBRARIES(MyApp ${KLAMPT_LIBRARIES})

5. Build your project in standard CMake fashion.
6. [Note: you may need to set the cmake variable BOOST_ROOT to yefle®oost installation path using
GKS O02YYlIyR5L g ¢pMhhBY kdJ Kk G2k02280¢ 2-00]FAF | RRA

. dzA £ RA Y Bom¥sOukc LIS NI F2f f 26 Ay 3 (KS A JabiliNjadrovnLy+a dzy RSNJI i K S
applications that lih (0 2 & E |stakdi@diCMake procedure should generate approgridisual Studio
project files.

Building Python binding$rom source (tested with Pythor2.7, Win32 The standard CMake procedure should
generateVisual Studio project files for tHeINR 2 S O (i-A 6 & dutitiie@dAre brokeninstead, download the
Windows Python setup.py file frofttp://klampt.org and copyit to the Klampt/Python directory. Edit the paths
at the top of the fileto reflect your c& LJdzi SN a T A £ § operiaNiz@IiStaNaSCdmmaadAPydiimit f &
AdministrativeMode, anddepending on your VS versiauin:

VS 2008:
python setup.py install
VS 2010:
set VS90COMNTOOLS=%VS100COMNTOOLS%
python setup.py install
VS 2012:

set VS90COMNTOOLS=%VSIAOMNTOOLS%
python setup.py install


https://pypi.python.org/pypi/PyOpenGL/3.0.2
http://user.xmission.com/~nate/glut.html
http://klampt.org/
http://www.iu.edu/~motion/software/Klampt-0.5.win32-py2.7.exe
https://github.com/krishauser/KrisLibrary
http://klampt.org/
http://klampt.org/

VS 2015:

set VS90COMNTOOLS=%VIIAOMNTOOLS%
python setup.py install

Building dependenciefrom source If you wish to build dependencies from scratch, Visual Studio project files are
available. Makesure to place all compiled library (.lib) files in tiiampt/Library folder. All libraries should be
built in Win32 mode, with C++ code generation set to Multithreaded DLL / Multithreaded Debug DLL.

Note:when buildingKrisLibrary you may need to set thmake variable BOOST_ROOT to reflect your Boost
Ayadalrttlraazy LI (K dza A5y, =h hi{ KeQp wOn2hYeYT I kyLB: (f KAkyliS2 k20LAi2Aa20y8 &2 NJ DA |
cmakegui.

The general procedure is as follows:

1. Acquire Boost, GLUT and optiogalbut recommendedVinGLPK 4.6dnd/or AssimB.0.1270 Place the
glut32.lib glew32.libglpk_4_61lib files inKlampt/Library or in your Visual Studio path. Place the
Assimp folder irklampt/Library .

2. Configure and edit dependencies as follows:

1. GLUI: Visual Studio will complain about template instantiations inside class definitgnshin
simply put these in the global namespad&lso, if you are using GLUI rather than Qt4, due to
+Ahadzf {GdzRA2Qa &aiNRYy3I Niesich® DébghddeeRan D[ | L A f
EditText is created. To fix this, you will have to add several checks similar to this:
if(text.empty()) return 0; inglui_edittext.cpp

2. ODE: Set up build files wigremake4 vs2010.

3. Compile all dependencies except for KrisLibrary. Place all generated .lib files iktiathet/Library
directory.

1. ODE: compile in double precision, Static.

2. GLUI: compile as usual.

3. TinyXML: compile with STL support.

4. Compile KrisLibrary last. CMake files available for compiling KrisLibrary with/without Assimp support
and with/without GLPK suppor¥.ou may need to do some editing of the BOOST directories using €Make
GUI depending on how you built Boost.

5. After compiling, all of the .dll files associatedtwdependency libraries should be placed in the
FLILINRLINREFGS YEIYLIQG 0AYFENE F2f RSNAO®



3. RUNNINGY [ ! a tARPXS
RobotTesthelpsinspectdebug pbot filesandis run from the command line as follows:

./RobotTest robot_file

File

free mode

¥ geometry [~ COM [ frame [~ bboxes [~ expanded [ colisions

& Llink ¢ Driver | |——— K | Print Collisions

Link |0 3: hex x ~| Angle U.IZE: [-inf inf], T [0,0]

(@)

Link cantrols
\ndexlo—g

Name[nexx o
angle[00 3]

v [-inf infl, T [-0,0]

Driver contrals
7 Pose by IK.

ndex[0 2]
Name[ip a1 7|

angle[00 3
v [-22), T [-0.5281,0.5281]

[~ Draw geometry

¢ Draw COM

I~ Draw frame

™ Draw bhoxes

™ Draw collision tests

(b)

Figure 1 The RobotTest GUI ((a) Qt version, (b) GLUI versic
./RobotTest data/ robots/ athlete.rob

SimTestperforms physics / control simulation amlrun from the command line as follows:



./SimTest [world, robot, environment, or object files]
(e.g., ./SimTest datadbots/athlete.rob dataterrains/plane.env or ./SimTestata’hubo_plane.xnh)

File Windows Camera Record Logging Help

Display I” Contacts [ Wrenches [~ Desired ¥ Poser [~ BBoxes [~ Expanded

S\MWO 5 @ MudsW 1K g b.

Free Drag Mode: drag to rotate, shift drag to zoom, ctrl drag to truck

(@)

I Goto

Simulate
Reset
Save movie

™ Log simulation state

Input/output =

Item Iypelmtatej
Save
Load
File [robat_com |

W Draw poser
I~ Draw desired
I Draw estimated
™ Draw bhoxes
W Draw contacts
Controller settings =
Semnglenah\eFeedanamAcce\eralmm j

Value |1
Command| set_tg j
Arg
Sensors =

Sensori—j

I~ Show

Measuremeﬂl’ (0] |

[¥ Plot value
Isolate

Robat posing =

I Pose by 1K

Link 1[0.0 El

(b)

Figure 2 The SimTest GUI, (a) Qt version, (b) GLUI versiotrafisparent
8Stft29 NRoO20 A& (GKS aLRASNEOD® /¢
J SimTest data /tx90cups .xml

RobotPosehelpsa humandesigner create configurations, constraints, and motions, iamdn similarlyto SimTest



File

Load Resource(s) |

Save Resource | savenll |

Name Type ?
- LinearPat... LinearPath #
~-times  wector=d..

& milest... . Configs

i Co.. Config

[add new... =] [Convert to... =]

To Poser | From Poser |

¥ Geometry [~ COM [ Frames | BBoxes

 Link  Driver | | K
Link [0 3: Body_Torso0 ~| angle 0.02(3: [-inf inf], T [0,0]

@)
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Figure 3 The RobotPose GUI ((a) Qt version, (b) GLUI version). The 3C
O22NRAYIFGS TNI YSa | NB thérdbbtimT&iesian space
./ RobotPose data /hubo_plane.xml

3.1.INTERACTING WITH @RLDS

Eachof the alove appsfollowsa common cameraavigationand robot posing interface.

Navigating



Dragging with the left mouse button (lefirag) rotates the camerabout a focal point.
Alt+left-drag zooms the camera.

Ctrl+leftdrag pans the camera.

Shift+leftdrag moves the camera toward and away from the focal point.

=A =4 =4 =

Posing robots

1 Rightclicking on a robot link and dragging up and down will set its desired jount.val
1 The floating base of a robot is posed by righdgging on the widget.
1 IK posing
o ToswitchtoldJ2aAy3d Y2RS>T OKSO]l GKS at2a$8 o0& LYé odziitz

o Inthis mode, clicking on a point on the robot will add a new IK pminstraint.

0 The widget can be rightraggedto move the robot around.

o TypingPOQ HKAES K2@SNRAYy3I 20SNI I+ fAyl @Attt FRR I yS
o Typing?RQ RSESiSa +ty LY O2yaidNXAyGo

RobotTest commands

T WKQ LINAyida GKS FdZ t KSft LI
 WLIQ LINR y donfigurdtidh tolth2 éoBsBle.

SimTestommands(GLUI version)

T Command line options
0  3config [.config file] loads a robot start configuration from didik.more than one robot
exist in the world file, multipléconfig options may be specified to give thetas
configurations.
O Odmilestones [ milestone file] loads amilestone path from disk.
O &path[ .xmlor  .path file] loads aMultiPath orpiecewise linear trajectorfrom disk.
f WKQ LINAyda GKS FdzZ t KSt Lo
f ¢LIAY3I ¥ W 06aLlaDs2 o¢ D { 63viid 08 A (BIQRpAtHHAE o bthe posed
configuration to the controller.
f ¢eLAYy3I Wi QgreeNarrod (AtPop 4 K T dasUFp&ton toggles the simulation.
f ¢@LAY3I WYIHrQ | ROIyOSa o6& 2yS araydZ lFdAz2zy aadSL) omkmnn &
f Clickinghe red circlg(Qt) orthed { I @S bato@(GISUwill tell the simulator to start saving 640x480
frames to PPM files on disk at 30f$hese can be converted into a simulatitime (i.e., 1s of movie time
= 1s of simulated time) movie using a utility suctfegeg In Qt, the moviemaking command and
2dziLJdzi FAES OlFly 6S SRAGSR o0& aStSOGAYy3 a/ KIy3aS 9yo0O?
NBaLISOGABSteod ¢KS NBaz2tdziazy OFy | famkingS aSid FNRY
command must be exeted manually, andhie movie resolution can be changed by setting the
movieWidth andmovieHeight parameters irsimtest.settings(JSON format)
 /ftA01Ay3 (GKS NBR aLINAtggglesXotee applicatioll modéd Nicelapplidatird WFQ o6 D]
mode, right-clicking and dragging on the robot will apply a spilikg force between the robot and the
cursor position.
f ¢KS a{l @S ypin§ldnercadel @XDU) AaMds the current viewport to disk, aad] 2 F R + A S g ¢
(Qt) or typing uppercas¥ +&.U)doads the previously saved viewporthis is useful focreatingside-by-
sidecomparison videas



Note: when simulating a pathy f | YMlD2 §f @8 A a&dzS || aRA&aO2y (A ithedditiidoeddzy LI NBIj d
A0FNI FNRY (GKS NRo2GQa OdaNNByid O2yFAIdzNI A2y d LF @&
copy thestart configurationinto the world file, or provide thé config [file] command line argumentlo

y2i

easily extr®

- adl NI O2y FA3dzNI G A2y pythaB Rython/maldgitiipyt | G KisTAf ST dza

[path.xml] > temp.config £.

RobotPose commands

1 Command line options

il

1

il

(0]

8l [resource_library directory or XML file] loads a resource library from didultiple
libraries can be loaded in this way.

Individual resotcesor resource libraries may be loadédavedfrom diskviathea [ 2 R w- 8¢ k a{ | @
buttonsat the top.
Qt Version:

(0]

Resources in the resource tree can be expanded, dragged, and copied (Shiftisiligghe
mouse.
The status indicators in the resource tree are as follows:
A *indicates that the resource has been modified since loading.
A @ indicates that subesources have been modified, and RobotPose has not yet merged
the modifications into the topevel resource. (Click on the tégvel resource to
attempt the merge)
A lindicates that a prior merge was unsuccessful. For example, a Linear Path may not
have the same number of times as configurations. Correct the error and try again.
¢KS a! RR warpidvdzldns oteating new resources.
CKS a/ 2y @SNI G(2X¢ RNRLIR2gy Fff26a8 NBaz2dzNOSa G2
G¢2 LI2aSNE aSyRa GKS OdaNNByiafte asStSOGSR NBaz2 dz2ND
Gl 2t RéEX YR a{iGFyOSé o
GCNRY LJ2 & 8Nie cizrénfyNaastidiresource using its value in the poser. Works with
G/ 2yFTAIET aLYD2FftéxX al2fReéX yR a{lGFyOSé¢o
2 KSy [/ 2yFATaAaT [AYSINItFGKSE 2NJ adzf GAt | §K NBA&2dzND
optimizes a trajectory along the currentlglected resource, minimizing execution time under
GKS NRo20GQa @St20AGe IyR | OOStSNIXiA2y o02dzyRao®

GLUI Version:

(0]

oLibrary-> Posetf sets the poser to use the currently selected configuration, stance, hold, or

grasp from the resource library

oPoser-> Libraye stores the current posed configuration, stance, or hold to the resource library
{StSOGA2Y Aa I O02YLX A&aKSR @Al GKS awSaz2dz2NDODS ¢ &Ll
G AONINE /2y@SNIl¢ O2y@SNIa (GKS OdNNByidfe asStsSoi
0KS awSa2da® &St SO02N®

G/ NBH{AIKé 3ISYSNI (Sa dndsavkes/itioSherdsotirte librayyfe duskertli
selectedresourcd & | /2y FA 3 GeLIST AdG AYydSNLRfFGISa FTNRY i
resource If a Configs resource is seled, then it interpolates amongst the configurations in the

file.

GhLWGAYATS t1GKEg 3ASYSNIGSa FyR 2LIiAYAT S&a + GN¥ 28§
YAYAYAT Ay3a SESOdziAzy (GAYS dzy RSNJ (ThsSvorksBvbed (1 Q& @St
Corfigs, Linear Path, or MultiPath resources are selected.



o Note:path editing is not particularly sophisticated due to the limitations of GLUI. The best way of
generating a sophisticated pathside RobotPosks to generate keyframes into a Configs
resource} YR OK22&S &/ NBFGS tIGKé 2N ahLIWGAYAT S tFGKE

3.2.EXAMPLE FILES

World files for different robot@&nd problem setupare available in th&lampt/data subdirectory

=A =4 =4 =4

hubo*.xml; the KAIST Hubo humanoid.
puma*.xml: the Puma 760 industrial robot.
tx90*.xml: the Staubli TX90L industrial robot.
baxter*.xml: the Rethink Robotics Baxter robot.

Other test robots, objects, and environments are available indtzenpt/data/ {robots,objects,terrains}
subdirectoriesSome files of interest may include:

=4 =4 =4 4 -4 4 -4 -4 -8 -8 - -a o s

athlete.rob: the NA® ATHLETE hexap@dcomplete, missing wheel geometry)

atlas.rob: the Boston Dynamics ATLAS robot.

cartpole.rob: a cart-pole balancing control problem.

footed 2d_biped.roly  &AAYLX S H5 O0ALISR YAYAO1AYy3d | KdzYlyQa F2
footed_2d_monoped.roba sinple 2D monoped.

hrp2.rob: the AISTHRP2 humanoid

pr2.rob: the Willow Garage PR2 robot (requires KrisLibrary to be built with Assimp support)

robonaut2.rob: the NASA Robonaut2 humanoid torso.

robotiQ_3finger.rob: the RobotiQ dinger Adaptive Gripper.

simple_2d_biped.roty | aAYLX S H5 O0ALISR YAYAO(lAYy3 | KdzYlyQa ft
swingup.rob: a simple pendulum swingup control problem.

plane.env a flat plane environment

block.obj: a 40cm block

block _small.obj an 8cm block

Test motions are available in théampt/ data/motions directory.Simulation examples can be runwvia

1

= =4

/SimTest data/robots/athlete.rob data/terrains/plane.emeonfigdata/motions/athlete_start.config;
path data/motions/athlete_flex.xml

./SimTest data/hubo_table.xngpath data/motionshubo_table_path opt.xml

/SimTest data/hubo_stair_rail.xmpath data/motions/hubo_stair_railtraj.xml

3.3.0THER/ [ ! a ARPS

Y f | Yalsétzdmes wittthe followingutility apps:

il

URDFtoROHLINE RdzOS& | Yf I YLIQG ®NBO6 TFAL{S FNRBY Settingsyoh FTA SR  w
geometry import/export can be changed by editinglftorob.settings.

Y f | YspdOfic parameters (e.g., ignored self collisions, seawsy are given default valueBo change
these parametersthe.rob file must be editear the <klampt> element may be edited as described in



Y €

Section5.13

To dean up extraneous setfollision checks, the Print Self Collisions button ofRlodotPoseprogram
can be usedThe MotorCalibrate programmay be rurno fix up theservo gain and frictioparameters.

MotorCalibrate generates motor simulation parametegiven example commanded and sensed
trajectories. It runs a quasNewton optimization with random restarts to match the simulated values to
the sensed parameters as closely as follows.

To use it, ifst run it without arguments to generate a blantotorcalibrate.settingsfile. Edit the
parameters to set the robot, driver indices to estimate, whether any links are rigidly fixed in space, and
the commanded / sensed path fileis Cinear Path format)Then run it again with the settings file as

input, and itwill output the optimizedparametersto the console. Thedatter lines(beginning with
servoPshould be copied into the .robr .urdffile.

An exampleoptimizationis given by running
.MotorCalibrate Examples/motorcalibrate_baxter.settings
Multiple runs of this process, possibly with different initial conditions, should generate better matches to

the sensed data.

Unpackexpandsa composite resource into a hierarchical directory structure containing its components.
These components can be individyatdited and then reeombined into the resource usirigack

Packis thereverseof Unpack taking a hierarchical directory structure and combining it into a composite
resource of the appropriate type

Merge combines multipleobot and object files into a single robot file.

SimUtil is a command line interface to the simulator.

- YLIQG | $evesal ekathpldiapphictidms Klampt/Examples:

Cartpoledemonstratesggeneration of optimal control tables for two toy dynamicstemsg a pendulum

swingup and a carpole balancing task.

PlanDemois a command line kinematic motion planner for collisfoge motion between configurations.
ContactPlanis a command linkinematicmotion plannerfor collisionfree, stable motion in @ntact

between configurations.

RealTimePlanningdemonstrates reatime planning between randomly generated target configurations.
UserTrialsA & I RSY2yailNI itilnepannhd capabilities. LAGIRikar phgantwas used for

the user studies ifE. You and K. Haus@éssisted Teleoperation Strategies for Aggressively Controlling a
Robot Arm with 2D Inputn proceedings of Robotics: Science and Systems (RSS), Los Angeles, USA, June
2011.



4. DESIGNPHILOSOPHY

The main philosophiehind theY f | Ydesd@rilis to decouplModeling, Planning, Control, and Simulation
modules This division provides a clelagicalstructurefor developing largeoftwaresystemdor operating
complexintelligentrobots.

il

Modelingrefers to the underlying knowledge representation available to the robda. limb lengths,
physical parameters, environment, and other objects in its vicifitig Modeling module contains
methods for representing this knowledge. It also includesubiguitousmathematical models, such as
kinematics and dynamics, trajectory representations (e.g., splia®@s) contact mechanidbat required
for planning and control

Planningrefersto the computation of paths, trajectories, feedback control strateg@mfigurations, or
contact points for a robot. Planning may be merhed either offline or online.

Controlrefers to the highrate processingf sensor informationnto low-level robot controls€.g.,motor
commands) This also includes state estimatidtote that the boundary between planning and control is
fuzzy, because a fast planner can be used as a controller, or a planner caneanfpedback control
Strategy.

Simulationrefers to a physical simulation of a virtual world that is measta stanen for the real world
and robot The simulation module constructs a detailed physical #igidy simulation and instantiates a

controller and virtual sensors for a simulated robot. The controller then applies actuator commands that

apply forcesn the simuation.
Auxiliary moduls includeVisualizationreferringto the display of a simulated or animated robot and its
environment User interfaceand|/ O, referring to the serialization and management of resources

Planning, control, and simulatiare related by the use of (largely) common modelswever, the simulation
model does noheedto be the same as thplannerorO 2 y (i N2 f f BoNdxamplat 2yR $fode SO i Q&
be imperfectly sensed, a freefloating robotlike a humanoid mayat know precisely where its torso lies in 3D
space Also, br computational practicality a plannenightwork on a simplified model of the robot (e.g., ignoring
the arms during biped walking) while the controller must expand that information into thedfodit
representation.

Y t | Yosd®aiconcept model thatlsnguageindependent, which ismplemented usindanguagespecific APIs.
Since its most complete implementation is in C++, the following sections will discuss the concept model and the
C++ API todber.

C++ APiile structure.

|l

=A =4 =4 4 -4 A

Modeling: Klampt/{ Modeling, Contact/ , which dependseavily onKrisLibrary/robotics for basic
robot kinematics and dynamics, ardisLibrary/{math3d, geometry, meshing} for 3-D geometry
Planning Klampt/ Planning/, whichdependsheavily onKrisLibrary/ {planning, optimization}/
Controt Klampt/ Control/

Simulation Klampt/Simulation/

Visualization:Klampt/View/

User interface Klampt/Interface /

I/O: native I/O ismostlyembeddedinto models Import/export to XML world filesROS, and other
external formatsare found inKlampt/IO/ .

L2 & Al Az



Python APfile structure.

¢ KS Y PythahlARIGprimarily given in theklampt module found inklampt/Python. This module contains
functionality in itssub-modules for modeling, simulatioplanning and visualizationControl ishandledin a
separate module

=

= =4

= =4

]

=A =4 =4 -4 =4

Klampt/Python/klampt Y G KS YI Ay  Yahdinglhdestobor EnkrdaticS, dynamics, simulation,

and geometry representation#lso includes lovlevel IK solving and motion planningpdules.

Klampt/Python/klampt /math : basic 3D geometry.

Klampt/Python/klampt /modeling : other modeling, including IK, trajectories, Cartesian interpolation,

andsubN2 620 AYRSEAYy3Id {SGGAy3a FyR 3ISGGAy3a 402y FAIdzNI i
Klampt/Python/klampt /p lan: motion planningor robots.

Klampt/Python/klampt /sim : more advanced simulation functionality, such as logging and custom

actuator and sensor emulation.

Klampt/Python/klampt /ioY ! YAFASR Lkh F2NJ Ffft GeLSa 2som¥fl YLIQIU
objects as well. Resource loading, saving, and visual editing.

Klampt/Python/klampt /vis : Visualization.

Klampt/Python/ control: customcontrol modules.

Klampt/Python/demos : demonstrations about how to usarious aspects of the Pythdtampt API
Klampt/Python/exercises:SESNDA 488a& F2NJ AYLX SYSyidAy3a o6lard 02y 0osSLy
Klampt/Python/utils : utility programs.

5. MODELING

5.1.MATH
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Figure 4 The Math concept model.

Y £ | Yagsnies basic familiarity with 3D geometry and linear algebra concepts. It heavily uses structures that
representing vectors, matrice8PD points, 3Drotations, and3Dtransformations These routines are heavily tested
and fast.

C++ ARUsers shold become familiar with theefinitions in the following files:

=

=A =4 =

RSTQSR

w

KrisLibrary/math / math.h containsdefinitions for basic mathematical routinegeal A & G & LJ
double and(probably) should not be changed.

KrisLibrary/math / vector.hcontains avector Of I & & 0 (i ¥ddSTRBFRER )i 2
KrisLibrary/math / matrix.h contains aviatrix Of I 44 06 (i IS EBERSR )i 2
KrisLibrary/math / angle.h contains functions for interpolating and measuring distances of angles on
SO(2).



1 KrisLibrary/math3d/primitives.h contains 2D and 3D mathematical primitives. The clagsas2 |,
Vector3 , Matrix2 , Matrix3 , Matrix4 , RigidTransform2D  andRigidTransform  are efficient
implementations of 2D and 3D vector/matrix operations.

1 KirisLibrary/math3d / rotation contains several representations of rigid 3D rotations, including euler
angles, moments (aka exponential maps), araylis form, and quaternions. All representations can be
transformed into one another. All routines are implemented to be numdsicabust.

Thevector , Vector3 , andRigidTransform  Of I 84 S8& I NB (KS Y2aid o6ARSf@& dzaASR YI (K

accept all the basic arithmetic operations as well as dot products, norms, and distances. Applying a transformation
(Matrix3 or RigidTrasform) to a point (Vector3) is expressed using the * operator.

PythonAPI 3D math operations are found in théampt.math module under the following files.

vectorops: basic vector operations on lists of numbers.
s02: routines for handling 2D rotations.

s03: routines for handling 3D rotations.

se3 routines for handlin@D rigid transformations

=A =4 =4 =4

The use of numpy / scipy is recommended if you are doing any significant linear algebra. More information can be
found in the Klampt Math Tutorial.

5.2.3-D GEOMETRY

3D Primitive Triangle Mesh Point Cloud Voxelgrid

Vertices Points 12]=10)4

Faces Properties* Values

AnyCollisionGeometry

AnyGeometry

Implicit surface on vox

3D Primitive* Triangle Mesh* Point cloud* grid®

Collision accelerators

Figure5. The 3D geometry concept model.

Y t | Yose&ivariety of geometry type® definegeometric primitives, triangulated mesheand point clouds

Geometrydata, collision geometriesY f | Y LIQ{ & dzLJLJZebidietty ddtain@udiNgprinities, @idfgle 3
meshes, and point cloudi.also experimentally supports implicit surfaces defined on a voxel grid, but the
implementation is highly incompletat the moment This datas stored in- y 2 8 I18c8l @ame.



The notion of aollisiongeometrycombines some underlying geometric data with transformations and collision

acceleration structureCollision geometries havecairrent transformatiorthat sets where they exist in space, and

is used for collision testingtollision geometries sb supportan additional, nonnegativeargin  setting that

GSELI yR&¢é G(GKS dzy RSNI @Ay3a 382 YSiNEgingdeSnot attidINRRANMA y I O2 € f .
geometric databutrather itchanges the distance threshold that is used to considéidaag vs. noncolliding

geometries.

Geometric operationsupport. Triangle mesh support is complete, optimized, andte$ & § SR G KNR dzZ3 K 2 dzii Y
but the other geometries types are not yet fully supportegall modules

1 Drawing Al typessupported

9 Collision detection in planning\ll types supported. Note: Point cloud collision detection is currently
inefficient for large point clouds.

1 Tolerance verificationAll types supported. Note: Point cloud collision detection is currently inefficient for
large point clouds.

9 Distance detection in planniniot supported at the moment, but primitive/primitive and triangle
mesh/triangle mesh distance functions are available.

1 Ray castingTriangle mesas, wint clouds.

1 Contact detection in simulatioffrianglemesh / triangle mesland triangle mest point cloud only.

File formats Geometries can be loaded from a variety of file formakbe native triangle mesh format @bject

File Format (OFFyhichis a simpleASCIl file formatY £ | YLIQ G | f @#ckts QBU filefdn®fL & & dzILJYLIQG A &
compiled with Assimp support, it can also load a variety of other formats includin@8ENMMRL, etc. Point

clouds can be loaded from PCD files (v0.7), as specified by the Point Cloud Library (PCL).

Geometry cachig. Whenmultiple2 6 2S00G&a 2R GKS alyYyS 3S2YSONEB FAEST Yl
avoid reloading the file from disk and-ceeating collision acceleration structures. This is essential for loading very

large scenes with many replicated objects. However, when gdoes are transformed by API calls, they are

removed from the cache. So, to achieve maximum performance with many duplicated geometries, it is

recommended to transform the geometry files themselves in advance rather than dynamically through the API.

C++APL Geometry data is stored in thewyGeometry3aD type and collision geometries are stored in the

AnyCollisionGeometry3D type. These are essentially container types that abstract the underlying geometry and

collision acceleration data structureéEo operateon the data therein, users will needfoy & LISOG G KS 3IS2Y Sl
type andcastto the appropriate typeDetailed documentation can be found in the following files

1 KrisLibrary/math3d/ geometry3d.h defines3Dgeometric primitives, includingoint3D , Segment3D,
Triangle3D , AABB30Q Box3D, Sphere3D , andElliipsoid3D . There is also @eometricPrimitive3D class
that abstractscommon operations on any geometric primitive.

1 KrisLibrary/ meshing/TriMesh.h defines3D triangle meshes.

1 KirisLibrary/ meshing/PointCloud.h defines a 3D point cloud. Each point may contain a variety of other
named properties, including color, normal, id, etc.

9 KrisLibrary/ geometry/CollisionMesh.hcontains theCollisionMesh ~ and CollisionMeshQuery  data
structures.CollisionMesh ~ overloads theveshing::TriMeshwithTopology class and represents a
preprocessed triangle mesh for collision detectitircan berigidly transformedarbitrarily in space for
making fast collision queries via thellisionMeshQuery classand the
Collide /Distances /WithinDistan  ce functions Mesh-mesh proximity testing (collision and distance



computation) are handled by the open source PQP library developed by UNC Chapel Hill. These routines

are heavily tested and fast.
1 KrisLibrary/geometry/ AnyGeometryh definesthe AnyGeometry3D , AnyCollisionGeometry3D  , and

AnyCollisionQuery classes. Itis recommended to use these classes for geometric operations because

they are abstract and may be extended to handle more geometry representations in the.future

Python ARITheGeometry3D class irklampt module allows collision testing between geometries. All the standard

YElYLIQG 3IS2YSGNER (GeLlSa 03S2YSGNRO LINAYAGAGSEAS GNRIy3ES

documentation are defined iklampt/src/ geometry.h.

For converence, theklampt.model.collide module provides utility functiongr checking collision with sets of

objects as well as &vorldCollider  class that by checks collision between any set of objects and any other set of

objects. These methods return an iteoatover collision pairs, which allows the user to either stop at the first
collision or enumerate all collisions. The followimgldCollider =~ methods are used most often:

9 collisions() : checks for all collisions.

M collisions(filter) : checks for all collisiabetween objects for whictiter(obyj) returns True

9 collisions(filterd filter2) : checks for all collisions between pairs of objects for which
filter1(objA) andfilter2(objB) both return True

I robotSelfCollisions , robotObjectCollisions , robotTerrainCollisio ns, objectObjectCollisions ,
and objectTerrainCollisions check collisions only between the indicated robots/objects/terrains.

1 rayCast(s,d)  performsray casting against objects in the world and returns the nearest collision found.

5.3.ROBOTS

Y YLIQG arBithiy &reesirficiuréd articulated robots. Robot modefsovidethe following functiors

1 Describes a list of links with their parerfgs open linkage, specified in topologically sorted order)
1 Storeskinematiccharacteristics: link lengths, joint axiges, joint stops, inertial characteristics, and link
geometry,

9 Stores actuation limits

 {(2NB&a I aOdzZNNBy (¢ NPB dNétdi theSesyiotld i dabkight of @sylempoyaly @St 2 OA G &
variables see notes below

f  Computes and storesi K S N& © &NXNBRifyaines ia forward kinematics.

f /2YLlziSa GKS NRoz2GQa [FIANXYy3IALY ReylrYAOa GSNyxyao

9 Stores linkcollisiongeometiesand performs collision detection.

9 Stores informéon about which links can setbllide.

f  Names each link and contains semantics of thé hoti KS RSINBS& 2F FNBSR2Y 0K

and actuators.
1 Loads and saves robot descriptedfrom disk

File formats.Robots are loaded fronf f | Yspd@ific.rob filesor more widelyused URDF filesThese are simple
text files that are editale by hand.

Although URDF is more commonly used, there are some convenient aspects files that may be useful. For
example, themount command allows robot grippers and other attachments to be added automatically at load
time.



The basitJRDFRileformt i R2Sa y20 &dLISOATFEe &2YS Ibaad8e@indertBef Y | YLIQU
<klampt> XML tagSee the documentation below or the Klampt import robot tutorial for more details.

For simulation purposes, Klamp't will need some motor parameters twbaked §ervoP , servol , servoD ,

dryFriction , viscousFriction ). This can be done by hand by tuning and "exercising" the robot in simulation. An
automatic solution is given by tHdotorCalibrate program, which will optimize the constants to match a dataset
of sensed and commanded joint angles that you record while exercising the physical robot. See3S&fttion

more details about this program.

TheURDFtoRolprogram converts fromurdf to .rob files. Geometric primitive link geometries wilklzonverted
to triangle meshes.

Robot

%& R%Q%Bject Link kinematics Link dynamics

Kinematic limits Dynamic limits

E%@ﬁﬁ%ent Visualization infc

Current link

Current configuratior
transforms

Environment
Current velocity
Geometry Contact parametet

Coll. detection

Link geometry Strlctures

Rigid Object
Joint semantics Driver semantics
Geometry Contact parametet

Link/driver names = Motor sim parameter
Link dynamics Current pose

Figure 6 The Robot, Environment, Rigid Object, and World concept models.

C++APNf I YLIQG A& o iSlbrak/Shod patkade yor défikily articulated robot kinematics
and dynamics. Theobot class irkKlampt/Modeling/Robot.h has the following class hierarchy:

Robot ->RobotWithGeometry = ->RobotDynamics3D -> RobotKinematics3D  ->Chain

The reasons forhie class hierarchy are largely historical, but meaningful. For example, a protein backbone might
be modeled as a RobotKinematics3D but not a RobotDynamics3D.

1 chain stores thetopological sorting of the articulation (therents member).



1 RobotKinematics3D  stores the kinematic and dynamic information of links, joint limits, the current
configuration and the current link frames. It also provides methods for computing forward kinematics,
jacobians, and the center of mass.

1 RobotDynamics3D storesthe actuatorlimits and the current velocity. It provides methods for computing
AYTF2NXIEGAZ2Y NBElFIGSR G2 GKS NRo2dQa ReylYAOao®

1 RobotGeometry3D stores linkcollision geometries and information about which links can self collide. It
performs seHcollision testing and cli$ion testing with other geometries.

1 Robot defines link names and semantics of Joints and Drivers.

Python AP1.The PythorrRobotModel class provides flat access to robot models.

Configurations A robot configuratioris a nonredundant description of the pitions of each link of the robot, and
is essentially an ordered list of numbetsscribed by &onfig object Each entry in the configuration isdegree
of freedom(DOF) which is usually movable but is sometimes fixed to a constant value.

The robot model contains @urrent configurationlt is important tois not necessarily the current configuration of
the simulated robobr an actual robotbut is rathera temporary variablNB LINB a Sy G Ay 3 GKS O2y G NP |
mental state of where theobot might be posed

C++ APITheconig Of @& A& &AY LM (deeKLdSiRSByma@B/fectdrh).¢KS NRo2iG Y2RSt Q
configuration is described Robot.q . To ensure consistency between the configuration and the link frames, the

Robot.Updat eConfig(q) methodda K2dzZt R 0S8 OF ff SR G2 OKupdhad&ig GpedorndP 62 G Qa O3
forward kinematics to compute the link frames, whsienple assignment of the formobot.g=q does not.

Python ARIA Config  objectis simply a list of floating point numbers, adcdk' S NB 620 Y2R&f Qa O2y FA 3
retrieved / set usingrobotModel.setConfig(q)/ RobotModel.getConfig() . Upon callingsetConfig()  the link
transforms and geometries are automatically updated using forwardriatics.

Links.Links represent rigid coordinate frames that are connected to either another link or the world coordinate

frame. Everydegree of freedonof the robot has an associated Lilinks are named and numbered from O to

#DOFsl. Each linkstordsy Ay RSE 2F A& LINByids FyR GKS LI NByi AyRSE
(topologically sorted order). A parent €f indicates that the link is attached to the world coordinate frame. Each

link may be prismatic or revolute and moves along or arcaitidk axis given by a 3D vector. Links also contain

mass parameters, the reference transformation to its parent, arfgossibly empty) collision geometry, which is
ALISOAFASR NBfFGAGS (2 GKS f A¢D@ENDgidsBringfididviichiza e ad Sy | |
calculated using forward kinematics.

C++ APLinks are stored in theobot. links member, which is an arragf RobotLink3D Q& @ ¢ KS LI NBy i AYyRSE
each link is storeth the parents member,which is a list ofint Q.&he linktype is stored irRobotLink3D . type

and itsaxisis stored inRobotLink3D . w. RobotLink3D ~also contais mass parametersiiass, inertia  , com), the

reference transformation to its parent Parent 0 = | Y R clirférf trahsfoymnhtiOri world .

Link geometrs are stored in th@obot.geometry  variable (but to take advantage of the cache the
Robot.geomManagers  variableshould be used for saving/loading/modifying the geomgtihecollision geometry
transform isonly updated to the current link transforrafter robot.UpdateGeometry() is called

Python APRIReferences to links are retrieved using HueotModel.link(index or name) method. Kinematic
information can be retrieved viget/setParent() , get/setAxis() , andget/setParentTransform() (changing



from revolute to prismatic types is not supported at the moment). The current world transformation is retrieved
viaget/setTransform()

I NBFSNBYyOS (2 (KS f AY jedéry)d B&N6EGebdetryicdrrertlBaisiimS &S R GA | (1 K
updated autenatically afterRobotModel.setConfig(q)

Virtual links.To representree-floating basespne shouldusea set of Smassleswirtual linksand 1 physical link
that representthe X, y, and z translations and rotations around the z, y, and x axepi{cbilyaw convention)
Likewise, a mobile robot may be represented by 2 virtual links + 1 physical link: two foanslationsconnected
by prismatic joints, and the last fof connected to its parent by a revolute joid.baltand-socket joint may be
represented by 2 virtual links + 1 physical link.

C++ APRISeeRobotKinematics3D. InitializeRigidObject for an example of how to set up a floating base.
Python ARISee klampt.model.floatingbase.py for utility functions for setting up a floating base.

Joints. TheDOFf a robot are considered agenericvariablesthat define the extents of tharticulations between
links At theRobot level,Y f I Yntdliicesthe notion ofJints, whichintroduce a notion osemanticgo groups

of DOFsMost Jints will be ofthe Normal type, which map directly to a single DOF in the normal Wwiwever,
free-floating bases and other special typesioihts designate groups of DOFs that should be interpreted in special
ways.These speciabints include:

Weld joints, which indcate that a DOF should not move.

Spin joints, which are able to rotate freely and infinitely.

Floating  joints, which translate and rotate freely in 3D (e.g., fflating bases)

FloatingPlanar  joints, which translate and rotate freely in 2D (e.g., mohileeled bases)
BallAndSocket  joints, which rotate freely in 3D.

Closed joints, which indicate a closed kinematic lodyote:this is simply a placeholder for potential
future capabilitiesthese are not yet handled vif | Y LIQ {

=A =4 =4 4 -4 A

Drivers.Although manyobots are driven by motors that transmit torques directly to single DOFs, the Robot class
can represent other drive systems that apply forces to multiple DBdtsexample, a cabldriven finger may have

a single cable actuating three links, a mobile basg only be able to move forward and turn, and a satellite may
have thrustersFreefloating bases may have no drive systems whatsoever.

A robot is set up with a list @rivers available to produce iterques Normal drivers act as one would expect a
motor that drivesa single DO behave Connected transmissiongith linear relationshig between multiple DOF
(such agertaincable driver gear linkagesare supported througlthe Affine  driver type The otherdrivertypes
are not fully tested and/osupported although we hope to add some of this functionality in the future

5.4. TERRAINS

ATerrain is defined very simply asGollisionGeometry annotated with friction coefficientsThey may be loaded
from .envfiles orraw geometryfiles.In the lattercase, some default friction value is assigned (set to 0.5).

C++ ARISeeKlampt/ Modeling/ Terrain.h.

Python APRISee theferrainModel  class.



5.5.RIGID OBJECTS

ARigidobject is a collision mesh associated witlRigidTransform  and other dynamic parameters.
Rigid Objects may beloaded from.objfilesor raw geometryfiles. In the latter case, the dynamic parameters are
set to default values (e.g., mass = 1).

C++ APISeeKlampt/ Modeling/RigidObject.h.

Python APRISee therigidObjectModel  class.
5.6.WORLDS

A Worldstores multiple named robotgerrain, and rigid objects, along with associated visualization information.
Worlds are loaded fronxml files or createddynamicallyby loading individual element3he world essentially
stores three arrays containing robotsgid objects, and terrains.

Entity names Each entity in the world is named with a string identifier, which is ideally unique. If names are not
unique, entities must be addressed by index. Furthermore, some moduldddiket.model.coordinateassume
names are unique; if not, unexpected behavior may result.

Entity IDs.Each entity in the world, including eanbibot, robot link, rigid object, and terraincan be addressed via
auniquelD numberNote that this is not the same @ S y (i A (i &iGditheanaRd®iaining it; the indeis not
uniquewhen comparedicross entity types.

C++ ARSee theRobotworld  class Klampt/ Modeling/World.h)

Untimed paths (geometric paths Both paths and trajectories

Milestone path Spline path

Multipath

Settings* Milestones

Milestones Control points

Timed paths (trajectorie
Times* Velocities*

Piecewise linea DynamicPath Timed spline

Holds*

Times Timed, Timescaling

piecewise

Milestones parabolic curve

Spline path Settings* Common holds

Figure 7 ThePath concept models.

Python ARISee thevorldModel class.

5.7.PATHS AND TRAJECEH3RI



Y f | MdisfiRguishes betweepathsandtrajectories paths are geometric, timéee curves, while trajectories are
paths with an explicit time parameterizatiolMathematically, paths are expressed ascmtinuouscurve

wi dmfp © 6 while trajectories are expressed asntinuouscurvesw 6 o © & where § is the
configuration space anélfd are the initial and final times of the trajectargespectively

Classical motion planners compute pathecause time igssentiallyirrelevantfor fully actuated robots irstatic
environmentsHowever, a robbmust ultimately execute trajectorieso a planner must somehow prescribe times
to paths before executing thenvarious methods are availableYhf | Yd.donirert paths into trajectories.

Y £ | Yhad@es two path types.

1 Milestone lists The simplest pattype is simply a list ahilestoneghat should be piecewise linearly
interpolated. These are typically simply givenarsays ofconfig s. Note: to properly handle NP2 6 2 (1 Q&
rotational joints, milestones should be interpolated rahot-specific interpoldon functions Cartesian
linear interpolation does not correctly handle floating and spin jolb¢e he functions in
Klampt/Modeling /Interpolate.h (C++)yand RobotModel.interpolate 0 (Python)to do so

f Cubic splinetimed and untimed)Y f | sld@oiis piecewisecubic curvesRoutines foismooth spline
interpolation ofconfiguration lists are found iKlampt/Modeling /Splinelnterpolate .h (C++)and
Hermite spline interpolation in thelermiteTrajectory class irklampt.model.trajectory.

Y t | Yhadoiés thredrajectory types.

1 Piecewise lineaiThese trajectories are given by a list of times and milestones that should be piecewise
linearly interpolated These are typically simply givenasarray ofeals listing points in time along with
an arraycConfigs describing the milestones reached at each of those poifiee note above regarding
interpolation] With a historical misnomer, these trajectories are given intthearPath  class of
Klampt/Modeling/ Pathsh (C++). In Python they are given in th&ectory , SO3Trajectory
SE3Trajectory , andRobotTrajectory  clas®s ofklampt.model.trajectory.

1 DynamicPath (piecewise parabolic curve3hese areitne-optimal boundedacceleration trajectories that
include both configuration, velocity, and timoutines irkKlampt/Modeling/Paths.h or
Klampt/Modeling /DynamicPath.h are available to quickly comput®namicPaths from milestone lists,
milestone+velocity lists, and milestone+time lists giveroey and acceleration bound€++) Currently
not implemented in Python.

I Time-scaledcubic splined-ound inthe TimeScaledBezierCurve  class in
Klampt/Planning/TimeScaling.h (C++)

Especially for legged robots, the preferred path typedsiPath , which allows storing both untimed paths and
timed trajectories.It can also storenultiple path sections with inverse kinematics constraints on each section.
Conversiondetween most path typeare supportedin Klampt/Modeling/ Pathsh (C++)and
klampt.model.trajectory (Python)

Multipaths. AMultiPath  is a rich path representation féegged robot motion. They contain one or more pébhn
trajectory) sectionsalong with a set of IK constraints and holds that should be satisfied during each of the sections.
This information can be used to interpolate between milestones more intelligemtlfor controllers to compute
feedforward torques more intelligently than a raw path. They are loaded and saved to XMD¢éila#scan be

found inKlampt/Modeling /MultiPath.h (C++) andlampt.model.multipath (Python). The



Klampt/Python/klampt/model/multipath.py  can also be run as a script to perform various simple
transformations orvuliiPaths

Eachvultipath  section maintains a list of IK constraints in tk@bjectives member, and a list of Holds in the
holds member. Thee is also support for storing common holds in theiPath QlldSet member, and
NBFSNEBYOAY 3 (KS YoldiakeN&r ozdirkicesl  list<§k@yied vaa $tkng or integer index,
respectively). This functionality helps determine which constraintsshiared between sections, and also saves a
bit of storage space.

MuliiPaths  also contain arbitrary applicatiespecific settings, which are stored in a strkayed dictionary
membersetings . Common settings include:

1 robot , which indicates the name tiie robot for which the path was generated.

1 resolution , which indicates the resolution to which a path has been discretizegolftion  has not
been set or is too large for the given application, a program should use IK to interpolate the path.

1 program , the name of the procedure used to generate the path.

1 command_line , theshellcommandused to invoke the program that generated the path.

Sections may also have settings. No common settings have yet been defined for sections.

5.8.INVERSE KINEMATICS
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Figure 8 TheForward Kinematics and Jacobian subroutines (implemented in a Robot) and -
IK solver subroutine

Inverse kinematics (IK) constraigtsi I 6§ S G KF G a2YS @I NR I o tshddmeeyfixed valuasy | Qa 02
relative to the world coordinate system, or fixed values in the coordinate system of any otheTlieke can be

position constraints, dentation constraints, or also linear constraints on either position or orientatiomachieve

adzOK O2yaili NI AYy(Gas YaghsohdRimericlsolvérifok gérerallsetsoblé dodsyaints, possibly

also including joint limits and cent@f-mass constraints.



AniKGoal defines a constraint on a single linkhelink membermustbe filled out prior to useand indicates the
f Ayl Qa Ay R %the @nstrahtiisimeaBadcanstrain the link actargetlink on the robot (rather than
the world), then thedesiLink member should be filled out. By defaultsiLink is -1, indicatingthat the targetis
in world coordinates

Easy setupFor conveniencehe SetFrompPoints  method (C++) andetFixedPoints ~ method (Python) are
provided to mapa list of local point$o a list oftarget space pointsThis function covers most typicid
constraints.If there is a single point, the constraint is a fixed point constréiithe points are collinear, the
constraint is an edge constrairif.the points span a plane, the constraint is a fixed constraint.

Detailedsetup. Position constraints are defined by thealPosition , endPosition , and optionally the direction
members.There are four types of position constraint available.

9 Free : no constraint

1 Planar : the point is constrained in one dimension, i.e., to lie on a plaleeeendPositon  refers to a
point on the plane andirection  refers to the plane normal.

91 Linear :the pointis constrained in two dimensions, i.e., to lie on a liereendPosition  refers to a
point on the line andiirection  refers to the line direction

1 Fixed : the point is constrained to a fixed poitiereendpPositon  refers to that point and direction is
ignored.

Rotation constraints are defined by tkedRrotation and optionally theocalAxis  members.There are three
types of rotation constraint avaible.

1 Free : no constraint

I Axis : rotation is constrained about an axiEhe directionocalAxis ~ maps to theendRotation  direction.
These must be unit vectors.

9 Fixed : rotation is fixedTheendRotation =~ memberisaMomentRotation that represents the fixed
orientation. To convert to a 3x3 matrix, call tkeetFixedGoalRotation method (C++) opetRotation
method (Python) . To convert from a 3x3 matrix, call tisetFixedRotation method or
setFixedRotConstraint method (Python)

IKGoals are implemented KrisLibrary/robotics/IK.h (C++)and thelKObjectivewrapper class in
Klampt/Python/klampt/src/robotik.h  (Python).

Numerical solversNumerical inverse kinematics solvers are extremely flexible and can solve for arbitrary

combinafons of IK constraint: KS& (1 1S GKS NRo20GQa OdzZNNByd O2y-FAIdzNI (A :

Raphson technique to (hopefully) solve all constraints simultaneotisse routinesutomatically try to optimize
only over the relevant variablested ®> A F (KS 2yte& O2yadNI Ayl Aa 2y
left leg will not be included as optimization variables.

C++ ARIThesolvelk()  functions inKrisLibrary/robotics/IKFunctions.h are the easiest way to solve IK
constraints.For richer functionalityconsult the documentation ahe RobotlKFunction ~ and RobotlKSolver
classes andet*Dofs()  functions.

Python ARIConvenient calls to IK solvers are found inklaenpt.model.ik module. Functions for global inverse
kinematics(using random restarts) arldcal inverse kinematics (limiting the amount of joint angle deviation)
solvingare available.



Analyticalsolvers. There arehooks for analytical solvers ifrisLibrary/robotics/AnalyticlK. h but these are not
used yet iny f | tYRLMre versions may support them.

5.9.DYNAMICS

The fundamental Langrangian mechanics equation is

6nn o6nm on ot on 0 @)

Wheren is configuratiom is velocity fjis accelerationd 1y is thepositive semidefinitenass matrixé A is the

Goriolis force"On is thegeneralized gravityt is the link torque;Qare external forcesand0 1} are the Jacobians

of the points at which the points are appliegd. N2 o621 Qa Y20GA2y dzy RSNJ I3AGSyYy (2NJdzSa
computedby multiplying both sides by Band integrating the equation forward in time.

C++APIY f | YhadQeveral methods for calculatingd manipulating these term3he first set of methods is
found inRobotKinematics3D ~ andRobotDynamics3D .¢ KS &S dA 53 k@S ¥ &fakdd Re téridd
mathematically in terms of Jacobians and Jacobian derivatives, and runs’)nTR&tTalcAcceleration method is
used to convert the RHS to acceleratioftisWard dynamick CalcTorques is used to convert from accelefahs to
the RHSifverse dynamigs

The second set of methods uses the Newteuler rigid body equations and the Featherstone algorithm
(KrisLibrary/robotics/NewtonEuler.h ). These equations are O(n) for sparsely branched chains and are typically
faster than the classic methods for modestly sized robots (e.g., ®@)oughNewtonEuler is designed particularly
for the calcAccel andcalcTorques methods for forward and inverse dynamics, it is also possible to use it to
calculate the C+G term in O(n) time, @hdan calculate the B or'Bnatricesin O(rf) time.

Python APRITheRobotModel class can compute each of these items using the Nev#oier method.
5.10. CONTACTS

Yl YLIQU -ekedaldpirandinsifowarking with contactsCurrently these support legged locomotiomore
convenientlythan object manipulationbecause the manipulated object must be defined as part of the robot, and
robot-object conact is considered selfontact.

C++API These routines can be foundKmisLibrary/robotics , in particularContact.h Stability.h, and
TorqueSolver.h

1 AcontactPoint s either africtionlessor frictional pdnt contact Consist of a position, normal, and
coefficient of friction.

1 AcontactFormation  defines a set of contacts on multglinks of a robotConsists of a list of links and a
list of lists of contactd~or all indices, contacts]i] is the set of contacts that affectksi]
Optionally, selcontacts may be defined by providing the list of target litakgets]i] , with -1 denoting
the world coordinate frame. @tact quantitiesmay begiventargetspace or in linkkocal coordinates is
applicationdefined.

1 TheTestcOMEquilibrium  functions test whether the center of mass of a rigid body can be stably
supported against gratyi by valid contact forces at the given contact list.



1 TheEquilibriumTester class provides richer functionality thaastcOMEquilibrium , such as force
limiting and adding robustness factotsmay also save some memory allocations when testing multiple
centers of mass with the same contact list.

1 ThesupportPolygon  class explicitly computes a support polygon for a given contact list, and provides
even faster testing thagquilibriumTester for testing large numbers of centers of mass (typically
around 1020).

1 TheTorqueSolver class solves for equilibrium of an articulated rolboder gravity andorque
constraints.It can handle both statically balanced and dynamically moving robots.

PythonAPI These routines can be foundkfampt.model.contactwhichare thin wrappers around the underlying
C++ functions

1 AcontactPoint is either a frictionless or frictional point contact. Consist of a position, normal, and
coefficient of friction. Unlike in C++, the ContactPoint data structure also contains which objects are in
contact.

9 forceClosure  tests whether a given set of contacis in force closure.

I comEquilibrium  tests whether the center of mass of a rigid body can be stably supported against gravity
by valid contact forces at the given contact list.

9 supportPolygon  computes a support polygon for a given contact list. Testiegdsulting boundaries of
the support polygon is much faster than calltaghEqulibrium — multiple times

9 equilibriumTorques solves for equilibrium of an articulated robot under gravity and torque constraints.

It can handle both statically balanced and dyneely moving robots.

5.11. HOLDSSTANCESAND GRASPS

The contact state of a single link, or a related set of links, is modétadhree higher-levelconcepts Holds are a

set of contacts of a link against the environment amd used for locomotion planningstances are a set of Holds.
Grasps are generally used for manipulation planning but could also be part of locomotion as well (grasping a rail
for stability, for example).

Holds are defined as a set of contadthe contacts member)and the associated IK constraitie ikConstraint
member)that keeps a link on the robot placed at those contacthese contactare consideredixed in the world
frame. Holds may be saved and loaded from dilke C++ API defines themkitampt/ ContactHold.h, which also
definesconvenience setup routines in tfeetup* methods.The Python API defines them in

klampt.model.contact

The C++ API also defines a couple additional classes:s (Klampt/Contact/ Stanceh) define all contact
constraintsof a robot.They are defined simply as a map from links to Haldsps (Klampt/Contact/Grasp.h)
aremore sophisticated than hokthndare most appropriate for modeling hands that make contact with fingers. A
Grasp defines an IK constraint of some lieky(, a palm) relative to some movable object or the environment, as
well as thevalues of related link DOKs.qg., the fingers) and possibly the contact st&ete: support for planning
with Grasps is limiteth the current version

5.12. RESOURCES AND RESTEURBRARIES

Most of the types mentioned in this secti@an be saved and loadéam disk conveniently through th¥ £ | Y LJQ {
resource management mechanisiivhen working on a large project, it is recommended that configurations,



paths, holds, etc. be stored tledicated sukproject folders to avoid polluting the maivi f | Ydlder {Resources
are compatible wittthe RobotPoseapp,as well as the C++ and Python APls.

Currently supported types include:

1 config (.config)

1 Hold (.hold)

1 stance (.stance)

1 Grasp (xml)

1 Configiration lists(.configs)

1 Trivesh (.off, .tri, etc)

1 PointCloud (.pcd)

1 Robot (.rob)

I RigidObject  (.0bj)

T  world (.xml)

91 Linearpaths (.path)

T Multipath  (.xml)
YEFYLIQG Ffaz2 &adzJR2 NI (KS F2tft2¢Ay3a FRRAGAZ2YIE GeLXSa

I Vector3

I Matrix3

i RigidTransform

I Matrix

T IKGoal

C++ ARITheKlampt/Modeling /Resources.hfile lists all available resource types. Note that a-pofject folder
can be loaded all at once through thesourceLibrary class KrisLibrary/utils/ResourceLibrary.h ). After
initializing aresourceLibrary instance with theviakeRobotResourceLibrary function in
(Klampt/Modeling/Resources.iv (2 Y I | Swakeiithedodd kil Yokl  methods can load an entire
folder of resources. These resources can be accessadrhg or type using theet*() methods.

Alternatively, resource libraries can be saved to XML files viacttexmi/Savexml() methods.This mechanism
maybe useful in the futurefor exampleto send complexobot data across a network.

Python ARITheklampt.io.resource module allows you to easily load, save, or edit resourdésual editing is
supported for Config , Configs , Vector , and RigidTransform  types. See thePython/demos/ resourcetest.py
demo for more examples about how to use thisdule

5.13. FILETYPES

The following standard file types are usedviri I Y LJQ (i

World files (.xml)

Robot files (.rob)

' w5 C TFAft S &spéciidielemerits (:uhd)JQ
Triangle mesh files (.tri)

Rigid object files (.obj)

= =4 =4 -4 -9

g K.



Configuration files (.config)
Configuration set filegconfigs)
Simple linear path files (.path)
Multipath files (.xml)

Hold files (.hold)

Stance files (.stance)

Grasp files gml)

= =4 =4 -4 -4 -4 =

World (.xml) files

Structure an XML v1.0 file, containing robots, rigid objects, and terrains, as well as simplataneters. Follows
the following schema.

1 world : top level element.

Attributes
background (Vector4, default light blue): sets the RGBA background color of the world. Each channel h
range [0,1].

1 robot : adds a robot to the world.

Attributes
nameO A G NRY IS 2LIA2yFfS RSTFLdA G aw2o62iG60Y |
fle  (string): the Robot (.rob) file to be loaded. May be relative or absolute path.
config  (Config , optional): an initial configuration. Format: q 1 éwhgeke N is the number of
DOF in the robot.

f rigidobject  : adds a rigid object to the worldf thefile attribute is not given, then the
geometry child must be specified. Note: rotation attributes are applied in sequence.

Attributes
fle (string, optional): the Rigid object pj) file to be loaded. May be relative or absolute path.
positon  (Vector3 , optional, default (0,0,0)): the position of the object center
rotateRPY (Vector3 , optional): rotates the object about the given rpitch-yaw entries.
rotateX  (Real , optional):rotates the object about the x axis.
rotateY  (Real , optional): rotates the object about the y axis.
rotateZz  (Real , Optional): rotates the object about the z axis.
rotateMoment  (Vector3 , optional): rotates the object with a rotation matrix derived from thieen
exponential map representation.

9 geometry Y &aSita GKS 202500 Qa 3S2YSiNEO
Attributes
meshO AGNRAYIOY GKS 3IS2YSGNE FAES O0DGNRZ
should work with any type of geometry file)
scale (Real Or Vector3 , optional): a scale factor for the mesh. If 3 elements are givern
then this scales the mesh separately along each axis.
translate  (Vector3 , optional): a translation for the mesh.
margin  (Real , optional, default 0): the collision boundary layer width.




1

1

terrain  : adds a terrain to the world.

phys ics : sets thephysics parameters of the object.

Attributes

- mass RealX 2LJIA2YIlI X RST

- com(Vector3 ¥ 2 LIiAZ2YyIFf X R
of its coordinate frame.

- inetia  (Marix3 ,opt2 Y £ X RSFlLdzZ G noY GKS 2062S0I(

- automass O @I £ dzS ané 2N amézI 2LIA2ylfoyYy GKS
automatically from the geometry.

= kRestitution, kFriction, kStiffness, kDamping

' dzt G mOoY G4KS 2062S5(
STlLdz G 6nZnZnooyY H

(Real s, optional, defaults 0.5, 0.5,
inf, inf): set the constitutive parameters of the object.

Attributes

file  (string): the geometry (.tri or .pcd) file to be loaded. May be relative or absolute path
scale, margin . Seeworld/rigidObject/geometry/scale, margin .
translation, position . See world/rigidObject/position

rotate* . See world/rigidObject/rotate* .
kFriction . See world/rigidObject/physics/kFriction

simulation (optional} configures the simulatiomodel.

1 display (optional):configures the OpenGL display of the terrain.

1

Attributes

- color (Vector3 orVector4 , optional, default light brown): sets the RGB or RGBA colo
the terrain.

- texture OAGNAY IS 2LIA2ylLf0Y asSda | GSEGdzNE

GO2t 2NHNI RASYy (¢ i GKS Y2YSyio

globals  (optional} global ODE simulation parameters

Attributes

- gravity (vector3 , optional, default (0,09.8)) sets the gravity vector
= CFM

- EFP

- maxContacts (int, optional, default 2Q)sets a maximum number of contacts per bedy
body contact.

- boundaryLayer (bool, optional, default 1): activates boundary layer collision detection

- rigidObjectCollisions (bool, optional, default 1): activates object to object collision
detection.

- robotSelfCollisions (bool, optionaldefault : activategobot sef-collision detection.

- robotRobotCollisions (bool, optional default Q: activatesobot to robotcollision
detection.

terrain  (optional):terrain configuration

Attributes
- index (int): the terrain index.

1 geometry :Sets up the geometry and constitutive parameters

Attributes
- padding (Real , optional, default O for terrains, 0.062or everything else): sets
the boundary layer thickness.

- kRestitution, kFriction, kStiffness, kDamping . see
world/rigidObject/physics/k*




1 object (optional): rigid object configuration

Attributes
index (int): therigid objectindex.

1  geometry . Seeworld/simulation/env/geometry
1 robot (optional): robot configuration

Attributes
index (int): therobot index.
body (int, optional, defaultl): the link index:1 applies thesettingsto the entire robot.

geometry . Seeworld/simulation/env/geometry
controller 02y FAIdzNBA GKS NRo2GQa O2y iNRff SN
certain set of optional attributes that cave set here.

Attributes
type (string): the controller type. See Secti8r8for more details.
rate (Real, optional, default 100Hz): rate at whtble controller runs, in Hz.
timestep (Real, optional, default 0.01): 1/rate.

1 sensor s:O2Yy FAIdzZNBaA GKS NRo2GQa aSyazNh
1 Children Any of the sensor typdssted in Sectior8.2.
1 state :resumes the simulator from some other initial state.

Attributes
data (string): Base64 encoded data from a prior WorldSimulator.WriteState call. Oth
than simulation state, the world file must be otherwise identical to the one that
produced this data.

Robot (.rob) files

Structure a series of lines, separated bgwlines. Comments start with, may appear anywhere on a linend
comments continue until the end of the line. Lines can be continued to the next line using the backslash

A robot has N links, and D drivefSlements of each line are whitespaseparatedIndices are zerdased. inf
indicates infinity. Some items are optional, indicated by default values.

Kinematictems

l'inks LinkName[ 0] é1] Llink maxnes; ®iames with spaces can be enclosed in quotes.
parents parent[ 0]-1f: lipkapaest ingises.-m AYRAOFG0Sa | fAy]1Qa LI NByi
jointtype v[ 0] wN-1]:DOF motion type, can befor revolute orp for prismatic.

tparent T[ 0]1]:&elativenrigid transforms between each link and its parent. Each TJ[i] is a list of
column vectors of the rotation matrix, followed by the translation BRuesfor each 7.

{ alpha, a, d, theta } v[ 0] é1]vDenavitHartenberg parameters. Either tpareat D-H parameters
must be specified. alphadeg is equivalent to alpha and thetadeg is equivalent to theta, but in degrees.
axis a[ 0] é -1 1DOF axes, in the local frame of the l{gk/alues for each)a Default: z axis (0,0,1).
gmi n v[ 0] -1:cenfiguration lower limits, in radiansgmindeg is equivalent, but in degreeBefault:-
inf.

gmax v [ 0] ¢é -1 Jcenfiguration upper limits, in radiangmaxdeg is equivalent, but in degreeBefault:
inf.

g vI[ 0] é1]vipitial configuration values, iradians.qdeg is equivalent, but in degreeBefault: 0.



translation : a shift of link 0. Defaul(0, 0, 0)

rotation : a rotation of link O, given by columns of a 3x3 rotation matrix. Default: identity.

scale : scales the entire robot model.

mount link fn [ optional transform T] : mounts thesub-robot file infn as a child of linknk . If Tis
provided, this is theelative transform of the subobot given by columns of a 3x3 rotation matrix followed by
the translation (12 values in T).

Dynamic Items:

mass v[ 0] ¢é -1 Jlikk masses.

automass : set the link centers of mass and inertia matrices automatically from the link geometry.
com v][ 0] -&]:linkcHnters of mass, given in local (x,y,z) coordinateal(&sfor each y. May be
omitted if automass isincluded.

inertiadiag vI[-0} lirkinertia matrix diagonals (Ixx, lyy, 1zz), assumindiaffonal elements are
all zero (valuesfor each . May be omitted ifrertia  or automass is included.

inertia v[0] X @1 bnk 3x3 inertia matrices (@msfor each . May be omitted ifnertia  diag or
automass IS included.

velmin v [ 0] é -1 Joenfiguration velocity lower limits, in radiangim in deg is equivalent, but in
degrees. Defaultinf.

vel max v[ 0]1]éconfignration velocity upper limits, in radiansimaxdeg is equivalent, but in
degreesDefault: inf.

accmax v /[ 0] -&]:ednfiguration acceleration absolute value limits, in radiansmaxdeg is equivalent,
but in degreesDefault: inf.

torque maxv[ 0] é -¢][: DOF torque absolute value limits, in Nm (revolute) or N (prism&tafault: inf.
powermax v [ 0] -&]:DOKpower (torque*velocity) absolute value limiefault: inf.

autotorque  : Set the torquemax values according to an approximatioiceration maxima * masses * radii of
descendent links.

Geometric items:

geomet ry fn[ 0]1]:¢geometnnfiles for each link. File names can be either absolute paths or relative
paths. Files with spaces can be enclosed in quotes. Empty geometries can be specified using
geomscal e v][ of:stalesthe lingeometry Default: no scaling

geomtransform  index m11 m12 m13 m14 m21 m22 m23 m24 m31 m32 m33 m34 m41 m42 m43 m44 : transforms
the linkgeometrywith a 4x4 transformation matrir with entries giverin row-major order.

geommar gi n v[-a]: seéts the collision geometry to have thistwal margin around each geometric
mesh. Default: 0.

nosel fcollision i[0] | [twinoffselfcellisiongbetween the indicated link pairs. Each
AGSY YIe 0SS | fAY|-1dgliRiGnEmeAy G(GKS NI y3aS niXzb
selfcollision i[O0] j[ oturnén sdfedlisipnskhetween the indicated link pairs. Each item
YEe 6S | tAYy1l A Yy-Rdalinkingmeil BefaultNaH s&dliSions ehabRd except for link vs
parent.

Joint items:



joint type index [optional baseindex]
should be interpreted. Kaseindex

:indicates low a group of link DOFs associated with liakx

ranging frombaseindex to index . type indicates the type of joint, and can lermal (LDOF inteval), spin
(1LDOF wrapping around from O to 2pikld (0DOF)floating (6DOF with 3 translational 1 rotational,

baseindex
specified) ballandsocket (3DOFRotational, baseindex must be specified).

Driver items:

driver type [params] : TODO: describe driver types normal, affine, translation, rotation.
servoP : driver position gains.

servol : driver integral gains.

servoD : driver derivative gains.

dryFriction

viscousFriction

Properties:

property sensors [file or XML string]

: driver dry friction coefficients.

. driver viscous friction coefficients.

World XML format above d@ection8.2for more details on the XML format of this element.
property controller [file or XML string] Y RSTAySa (GKS Neroz2dQa O2y iNRff SNJ
Seethe World XML format above oB6ection8.3for more details on the XML format of this element.

URDF fileg.urdf) g A (i K Yspdcifitlelenients

URDF (Unified Robot Description Format) is a widely usedhéb#d robot format found in ROS and other

LI O1F3Sad YiIYLQG KF-a Ffglrea 0SSy lofS G2 02y @SN

Y RSTAySa (GKS Nero2iQa aSya

is specified, this indicates that the joint operates on a group of DOFs

must be specified¥loatingplanar (3DOFRwith 2 translational 1 rotationabaseindex must be

Y f | Yspd@fic attributes, like motor sintation parameters and ignoring certain setfllision pairs. Starting in

BSNBAZ2Y nodcx YEIFYLQG OFy y2é NBI R <2 X¥L elerdetNBeo dzi S a

schema for defining this element is as follows:

il

robot : top level elementFollows URDF format as usual.

1

Kampt Y & LIS O A Fspe&kific patdmletdts.JQ (i

Attributes
use_vis_geom (bool, optional, defaulfalse): use visualization geometry in imported model.
fip_yz  (bool, optional, default trug flip the ¥Z axes of imported lingeometries.

package_root  (stringt 2 LJGA2Y Il 5 RSFlL dzZ G adé0Y RSa

Fye LI OlF3SYkké !'wlL aGNAYy3IE&ZT NBfFGA

world_frame O & 0 NR y 3> 2LIA Ziyﬁé fiafe oRtBeTikedzkoiid frande2 NI

freeze_root _link (bool, optional, default falsejf true, the root link is frozen in space
(useful for debugging)

default mass  (float, optional default 1e8): default mass assigned to links not given mass
parameters.

default_inertia (float, Vector3, or Matrix3optional, default 1e8): default inertia matrix
assigned to links not given mass parameters.

%)
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1 link :describes link parameters.

Attributes
name (string): identifies the link.
physical  (bool, optional, default trug if set to 0, this is a virtual link with no mass.
accMax (float, optional, default inf)sets the acceleration maximum for this link

servoP, servol, servoD (float, optional, defaults 10, 0, 1): sets the PID gains 0
this joint (note: must be a normallyriden link).
dryFriction, viscousFriction (float, optional, default 0): sets the friction

constants for this joint.

1 noselfcollision : turns off self collisions.

Attributes
pairs  (string, optiona): identifies one or more pairs of links for which sedflision
should be turned off. Whitespaeseparated. Each item can be an index or a link nam
groupl,group2  (string, optional): if groupl and group?2 are specified, collisions betwe
all of the linkgn group 1 (a whitespace separated list of link indices or names) will bg
turned off. Eithepairs or bothgroupt andgroup2 must be present in the element.

1 selfcollision : turns on certain self collisions. Note: if this item is present, default self
cdllisions are not usedSame attributes as noselfcollisions.

1 sensors: specifies sensors to be attached to the robot. eeWorld XML format
above orSection8.2for more details on the XML format of this element.



6. SIMULATION

Smulation functionalityA y Y fislbiiiLd@ ibp othe Open Dynamics Engine (OBig)d body simulation
packagebut adds emulators for robot sensors and actuators, and features a robushct handling mechanism.
When designing new robots and scenaribss important to understand a few details about haf | Yiviodkxsiin
order to achieve realistic simulations.

Boundarylayer contact detection. Other rigid body simulatorgend to sufferfrom significant collision handling

artifacts duringmesty S&a K O2f t AaA2yyY 20602S5S00Ga oAttt 2AGGSNI NI LIARCE
The primary cause is that contact points, normals, and penetration depths are estimated incorrectly or
inconsistently from stefio-step.Y f | Yosd®ainevboundary layer contact detectigerocedure that leads to

accurate and consistent estimation of contact regidvisreover, the boundary layer can simulate some limited
compliance in the contact interfaceuch as soft rubber coatings or soft ground.

InY £ | Ydoiaidt is detected along the boundary layers rather than the underlying mesh. The thickness of the
boundary layer is a simulation parameter calftiding Padding for each body can be set via jihéling

attribute in the <simulation>{<robot>,<object>,<terrain>}<geometry> XML element, with all bodies padded
with 2.5mm by default. This allows it to handle tighell meshes as illustrated in the following figure.
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Thefirststepol f I QARIQD2f t AdA2Yy KIFIYyRfAYy3 NRdziAyS Jgéométrz O2 YLIzGi S |
primitiveswithin the padding rangeThis is somewhat slow when fine meshes are in contact. In order to reduce

the number of contacts that must be handled by ORBmM then performs a clustering step to reduce the

number of contacts to a manageable numb&he maximum number of contacts between two pairs of bodies is

given by themaxContactglobal parameter, which can be set as an attribute in the X&ftulation>  tag.

For more details, please sé€: HauserRobust Contact Generation for Robot Simulation with Unstructured
Meshes In proceedings dhternational Symposium of Robotics Research, 2013.

Collisionresponse.In addition to padding, each body also has coefficients of restitution, friction, stiffness, and
damping kRestitution ~ , kFriction , kStiffness , andkDamping attributes in
<simulation>{<robot>,<object>,<terrain>}<geometry> XML elements). The stiffness ananaiping coefficients
can be set to nofinfinite values to simulate softness in the boundary layer. When two bodies come into contact,
their coefficients are blended using arithmetizean for kRestitutionand harmonicmeans for kFriction, kStiffness,
and kamping

The blending mechanism is convenient because only one set of parameters needs to be set for each body, rather
than each pair of bodies, and is a reasonable approximation of most material types. Currently there is no
functionality to specify custorproperties between pairs of bodies.

Actuator simulation.Y £ I Yhadflés actuators in one of two modes: PID control and torque control modes. It also
simulates dry frictior{stiction) and viscous friction (velocitiependent friction)in joints using theiryFriction

and viscousFriction parametesin .rob files. Actuator commands are converted to torques (if in PID mode),
capped to torque limits, and then applied directly to the links. ODE then handles the ftietroa

In PID mode, the torque applied Hye actuatorist Q@ — — Q — — QQvhereQ,Q, andQ
are the PID constants;- and— are the desired position and velocity; and— are the actual position and
velocity, andQs an integral error term.

The friction forces resist theotion of thejoint, andY I Yosd®aisimplstickslip frictionmodel where the
sticking mode breaking force is equal to and the sliding modéiction forceis i Q& * ‘* — .Note:
passive damping should lbandled via the friction terms

Like all simulatorsy f | Ydtdriot perfectly simulate adf the physical phenomena affecting real robadBome
commonphenomena include:

Backlash in the gears.

Back EMF.

Angledependent torques in cable drives.

Motor-induced inertial effectswhich are significanparticularlyfor highly gearednotors. Canbe

approximated by adding a new motor link connected by an affine driver to its respective link.

1 Velocitydependent torque limitge.g. power limits)Can be appromiated in a controller by editing the
NPOo203Q&a RNAODGSNI G2NJjdzS ftAYAla RSLISYRAy3I 2y @St20Aaied
WorldSimulationHook ~ Or editing theControlled  RobotSimu lator ~ class.

1 Motor overheating. Can be implemented manually by simutatieat production/dissipation as a

differential equation dependent on actuator torques. May be implemented\ivbadSimulationHook

=A =4 =4 =4



7. PLANNING

Motion planning is the problem of connecting two configuratiovith a feasible kinematic path or dynamic
0N} 2SO0G2NE dzy RSNJ OSNI I AYy O2yadNIAydasd ¢KS 2dziLidz
has the ability toplan:

Collisionfree kinematic paths in free space

Collisionfree, stablekinematic paths on constraint manifolds

Minimum-time executions of a fixed trajectory undeelocity and accelerationonstraint,
Minimum-time executions of a fixed trajectory undemrque and frictional force constrainfs
Replanning under hard reéime corstraints

=A =4 =4 4 -4

A variety of kinematic planning algorithms are supported, including PRM, RRT, RRT*, PRRRT*athyazPRM*,
LBTRRT, SBL, and PRT.

There are two levels of planning interface. Thbot-levelinterfaceis a highetlevel interfaceautomaticallydefines
notions of sampling, collision checking, dgimilar to the functionality of MoveltJTheconfiguration space
interfaceis much lower level and more abstract, and requires the user to define feasibility tests and sampling
routines (similar to tle functionality ofOMPL. The lower level approach is more tedious, but provides greater
power.

Regardless of which interface you use, the general pipeline is as follows:

1. Construct glanning problem Define the configuratiospace(Gspace) anddrminal onditions (start
and goal configurations, or in general, sets)

2. Instantiate aplanning algorithm Take care: some algorithms work with some problems and not
others

3. Call the plannerSamplingbased planners are set up for use in dimge fashion
a) Plan asdng as you want in a while loop, OR
b) Set up a termination criterion

Anytime planning means that theékklihood of success increases as more time sgemt optimizing
plannersthe quality of path improves too

4. Retrievethe path (sequence of milestones)

The resulting paths is then ready for execution or for some postprocessing smoothing.
7.1. ROBOILEVEKINEMATIGMOTIONPLANNNG

Highlevelkinematic motion planning generates collisiree paths forobots. The most basic form of planning
considerdixed-baserobotsin free space (i.enot in contact with the environment or objedts

C++ ARExample code is given itxamples/plandemo.cpp(the application can be created via the command
make PlanDemo ).

The general way tplan a path connecting configuratiogstart andqgoal is as follows:

1. Initialize aworldPlannerSettings object for arobotworld  with the InitializeDefault method.

Y|



2. Create asingleRobotCSpace  (Klampt/Planning/RobotCSpace.hwith theRobotworld , the index of the robot
(typically 0) and the initidizedworldPlannerSettings object.
3. Then, aviotionPlannerFactory (KrisLibrary/planning/AnyMotionPlanner .h) should be initialized with your

desired planning algorithm: KS &l yeé¢ aSdadAay3a gratf OK22asS Iy Ff3I2NAGK

4, Construct aviotionPlanninginterface* with the MotionPlannerFactory.Create() method. Call
MotionPlanninginterface.AddConfig(gstart) and MotionPlanningInterface.AddConfig(qgoal)
5. CallmotionPlanninginterface.PlanMore(N) to plan forNiterations, orcallPlanMore () untila time limit is

reached.Terminate whensConnected(0,1) returns true, and calbetPath(0,1 ,path ) to retrieve the path.
6. Delete theMotionPlanninginterface*

Example code is as follows.

#include APl anning/ Robot CSpace. ho
#include  <planning/AnyMotionPlanner.h>

/ITODO: setup world
WorldPlannerSettings settings;
settings  .InitializeDefault(world);

/ldo more constraint setup here if desired, e.g., set edge collision checking resolution
SingleRobotCSpace cspace(world,0,&settings); /lpla  nforrobot O

MotionPlannerFactory factory;

factory.type = ffanyo// options are fAprmo, Arrto, dAsblo, Aprm*o,

//do more planner setup here if desired, e.g., change perturbation size
MotionPlanner  Interface* planner = factory.Create(&cspace);
int istart=planner - >AddMilestone (gstart); //should be 0
int igoal=planner - >AddMilestone (ggoal); /Ishould be 1
int maxlters=1000;
bool solved=false;
MilestonePath path;
for(int i=0;i<maxlters;i++) {
planner - >PlanMore();
if(planner - >|IsConnected(0,1)) {
plann er - >GetPath(0,1,path);
solved=true;
break;

}
}

delete planner;

The default settings imvorldPlannerSettings (Klampt/Planning/PlannerSettings.h) and MotionPlannerFactory
should be sufficient for basic testing purposes, many users will want to tune theror better performanceFor
example, distance metric weights and contact tolerances may be tudekision margins can be tuned by editing
the margins of robot/object/terrain geometries.

To plan for part of a robot (e.ghe arm of a legged robot), th&ngleRobotCSpace2  class can be used instedgie
sure to configure théxedDofs andfixedvalues ~members before using it.

Note: althoughRobotCSpace.leontainsmulti-robot planningclasses, they aneot yet welltested. Useat your
own risk.

Python APIAt the highest level, th&lampt.robotplanning module offers convenience functioifganTox ) to set
up plans to generateollisionfree plansfor a robot to different types of target$lanning options can be
configured and gtra constraints fed into the planner using these functiohsRobotModels are also supported to
plan for selected parts of a robot.

et



Foreven greater contrglyou should create an appropriategpace for your problem and then call a planner
manually. Seval robotlevel Gspaces are available for youklampt.plan.robotcspace

1 RobotCSpace : avoids collisionwith other objects in the world.

9 ContactCSpace : avoids collisions, maintains IK constraints

I StanceCSpace : Same a£ontactCSpace , but also enforcebalance under gravitgivenknown points of
contact.

The planToX functions generate an instance @b@npPlan class definedin klampt.plan.cspace For manual
CSpace creation, you will need to create a MotionPlan instance and set uggpaceand stat and goal
conditions viaviotionPlan.setEndpoints

TheMotionPlan  class supports various options that must be Isetoreconstruction of the planner.

1 setoptions takes a variety of arguments including:
o W] Yy yn€anest fleighbors parameter.
0 onnectionThresbldQY Y| EAYdzY RA&GlIyOS 20SN) 6KAOK | 02yyS
is attempted.
0 PerturbationRadiu® Y Yl EAYdzy SELI} y&A2y NI RAdzA F2NJ wwe¢ | yF
1 For a complete description of the accepted options, seesti@anSetting documentation in the
Python/k lampt/src/motionplanning.h file.
1 The constructor selects between different planner types viaigpe argument. Examples may include
WLINY QX WNNI Q> waof QX WNNIfFQz SGO0o

Torun the planning algorithm callMotionPlan.planMore with the desired number of iterations. Continue calling it
until MotionPlan.getPathEndpoints returns nonNone.

Todebug orinspect the resultef a planner, theMotionPlan.getRoadmap () OrF MotionPlan.planner.getStats 0
methods can be used.

7.2.CONFIGURATICHPACE KINEMATIC MONIPLANNING

For even more control, the basespace interfaces can be overridden with custom behavioride variety of
systems can be defined in the configuration space framework, including vehicles and othertodic
mechanisms.

C++ APIEach &&pace is a subclass of the configuration space interface ctasse defined in
KrisLibrary/planning/CSpace.h. Please see the documentation

Python APRIEach &pace is a subclass of the configuration space interdapece definedin klampt.plan.cspace
At aminimum,the subclass shoulskt up the following:

1 bound: a list of pairs [(gbi0 Z X,Bn)pdiving an rdimensional bounding box containing the free space

1 eps: avisibiliy collision checking tolerance, which defines tieeolution to which motions are checked
for collision.

i feasible(x) :returns true if the vector x is in the feasible space. (an alternative to overrigisige  is
to calladdFeasibility Test(func,name) for eachconstraint test)



The feasibility test israauthoritative representation of &pace obstacles, andilwbe called thousands of times
during planning. For samplidzased planners to work well, this must be fast (ideally, microseconds)

To implement norEuclidean spaces, users may optionailgrride

1 sample() :returns a new vector x from a superset of the feasible space. If this is not overridden, then
subclasses should sespace.bound to be a list of pairs defining an asdigned bounding box.

9 sampleneighborhood(c,r) : returns a new vector x frommeighborhood of ¢ with radius r

1 visible(a,b) : returns true if the path between a and b is feasible. If thisat overridden, then paths
are checked by subdivision, with the collision toleranegace.eps .

9 distance(a,b)  :return a distance between a and b

9 interpolate(a,b,u) : interpolate between a, b with parameter u

Setting up and invoking motion planners is the same as in the #evet interface.
7.3. TIMEOPTIMALACCELERATICBOUNDEDIRAJECTORIES

The result of kinematic planning is a sequence of milestonbi&h ought to be converted to a tirqgarameterized
trajectory to be executedThe standargath controllers(see Sectio.3) do accept milestone lists and will do this
internally. Occasionally you may want to do this manually, for example, to perfatim gmoothing before
execution. This is currently only suppexditin the C++ API.

C++ ARIThe example program iBxamples/dynamicplandemo.cppdemonstrates how to do this (the program
can be built using the commamdake DynamicPlanDemo ).

This functionality is contained within thnamicPath class in theklampt/Modeli ng/DynamicPath.hfile, which
builds on the classes Klampt/Modeling /ParabolicRamp.h To shortcut a path, th&llowing procedure is used:

1. Setthe velocity and acceleration constraints, and optionally, the joint limitiie DynamicPath .
2. CallbynamicPat h. SetMilestones() . The trajectory will now interpolate linearly and stand stop at
each milestone.

3. Subclass theeasibilityCheckerBase class with the appropriate kinematic constraint checkers
overridingConfigFeasible ~ and SegmentFeasible . Construct annstance of this checker.

4, Construct eRampFeasibilityChecker with a pointer to thereasibilityCheckerBase instance and an
appropriate checking resolution.

5. CallbynamicPath.Shortcut(N,checker) whereNis the desired number of shortcuts.

The resulting trajeiory will be smoothedwill satisfy velocity and acceleration bounds, amitl befeasible.

Warning: freerotational joints(robots with freefloating basesvill not be interpolated correctlpecause this
method assumes a Cartesian configuration sp&gm joints are alsmot handled correctly at step But they can
be handled by replacingtep 5 with thewrappedShortcut  method.

For more details, please sa¢. Hauser and V. NthowHing.Fast Smoothing of Manipulator Trajectories using
Optimal Boundedhcceleration Shortcuts. In proceedings of IEEE Int'| Conference on Roboficscandation
(ICRA), 2010.



7.4 INTERPOLATION ANIME-OPTIMIZATION WITELOSEBCHAINCONSTRAINTS
(C++ ONLY)

Several outines inKlampt/Planning/RobotTimeScaling.hare used tdnterpolate pathsunderclosed chain
constraints.There is also functionality for converting paths to minimtime, dynamicallyfeasibletrajectories
using a timescalingmethod. TheTrajOpt program will do this from the command line.

The suggested method for doing so is to useugPath ~ with the desired constraints in each section, and to input
the control points as milestonepiscretizeConstrainedMultiPath can be used tproduce anew pah that
interpolates the milestones, but withfiner-grained set of constrairgatisfying configurations.

EvaluateMultiPath interpolates a configuration along the path that satisfies the constraints.
GenerateAndTimeOptimizeMultiPath does the same aBiscr etizeConstrainedMultiPath except that the timing

of the configurations is optimized as well

Each method takes a resolution parameter that describes how finely the path should be discietigederal,
interpolation is slower with finer discretizations.

See the following reference for more detais: Hauser-ast Interpolation and Tim@ptimization on Implicit
Contact SubmanifoldRobotics: Science and Systems, 2013

7.5.RANDOMIZEBLANNING WITHLOSEBCHAINCONSTRAINTS

Yt YLQG Klpan fanbiisibrifréely@ai A3 a4 G(KFIG alidrafe Ot 2aSR OKI A
hands andeet touch a support surface).

C++ APRIThe ContactCSpace  class Klampt/Planning/ContactCSpace.yshould be used in the place of
SingleRobotCSpace . Fill out thecontactik ~ member, optionally using thedd* () convenience routinesThe
kinematic planning approach can then be used as ugixample code is given liitxamples/contactplan.cpp (the
application can be created via the commamdke ContactPlan ).

Note that the milestones outputted by the planner should NOT be interpolated linearly because the motion lies on
alower-dimensionalnonlinear constraint manifolih configuration spaceRather,the path should beliscretized
finely on the constraint manifold beforsending it to any function that assumes a configuratipace pathThere

are two methods for doing sd:) usingMilestonePath. ~ Eval() with a fine discretizationwhich uses the internal
ContactCSpace::Interpolate method, or 2) construct an interpolatingath viathe classes in

Klampt/Planning/ RobotConstrainedInterpolator.h. This latter approach guarantees that the resulting path is
sufficiently close to the constraint manifolehen interpolated linearly

To useRobotConstrainedinterpolator , construct annstance with the robot and itk constraintsThen, calling
RobotConstrainedinterpolator.Make() with two consecutive configurations will produce a list of firely
discretized milestones up to the tolerangebotConstrainedinterpolator.xtol . Alternatively,the
RobotSmoothConstrainedinterpolator class and theiultiSmoothinterpolate function can be used to construct

a smoothed cubic path.

Python ARITheplanTox functions inklampt.plan.robotplanning accept arbitrary inverse kinematics constraints
using theequalityConstraints keyword argument. Internally, these functions use thatactCSpace class
defined inklampt.plan.robotcspace As in the C++ API, the plans are milestone lists, which should not be



interpolated linearly in joint space. Rather, thece. discretizePath(path,epsilon=1e -2) convenience
function is provided to calculate an approximate piecewisear joint space path from the milestone path.

7.6. TIMESCALINGPTIMIZATIONC++ ONLY)

TheTimeOptimizePath  and GenerateAndTimeOptimizeMultiPath functions in

Klampt/Planning/RobotTimeScaling.hLISNF 2 NY GAYS 2LIAYAT I GA2Y S6AGK NBaALISOI
acceleration boundsrimeOptimizePath ~ takes a piecewise linear trajectory as input, interpolates it viataccu

spline, and then generatdeyframes oftime-optimized trajectory GenerateAndTimeOptimizeMultiPath doesthe

same except that it takegultiPath S as input and output, and the constraints of the multipath may be first

interpolated at a finer resolution before timeptimization is perfomed.

7.7.REALTIMEMOTIONPLANNINGC++ ONLY)

Realtime motion planning allows a robot to plan while executing a previously planned path. This allows the robot
to avoid moving obstaclegmprove path quality without large delayend change itgoalsin reattime. It is critical

to use a system architecture that tightly contrélte synchronization between planning and executitive planner
must notspend more than a predetermined amount of time in computation before delivering the updated result
or else thepath could change in an uncontrolled manner with catastrophic conseque@®over, such a

method must be robust to unpredictable communication delays.

Y £ | Y LJGtihé& maxd® plénning routines are built to handle these issues graceaudigfurthermore havethe
followingtheoretical guarantees

The executed path is guaranteed to be continuous and within joingaisl, and acceleration limits
In a static environment the path guaranteed to be collision free
Any goal will eventually be reaet given sufficient timeir§ wall clock time)

Readtime planning is only supported in the C++ ARle main files containing this functionality are the
RealTimePlannerBase  base class iKlampt/Planning/RealTimePlanner.h and the subclass

RealTimeTreePlanner  in Klampt/Planning/RealTimeRRTPlanner.h A complete implementation including
communication with théJser Interface Thred@xecutionThread is given in th&TPlannerCommandinterface  class
in Klampt/Interface/UserInterface.h.

Conceptually, the mairequirementisthat the ExecutionThread andPlanningThread must be synchronized via a
motion queue The motion queue is a modifiable trajectofy) that is steadily executelly the Executionfiread
ThePlanningThread is allowed to edit the motion quewsyntironouslyby splicingin a changed path, which
modifies the motion queue after at a given tinfiRight now, the motion queue must be a DynamicRatHuture
implementations this requirement may be relaye8plices are specified on an absolute clbacause wen a
splice is made at timg, the planner must ensure that the old motion queue and the new suoffitch atthe same
configurationy(ts) and velocity aty@s).

The Planning Threal K 2 dzf R 6S AYAGALFt AT SR ¢ Xdi ath)akdSts iZniBr io@pistdald A y A G A |- §
proceedas follows:

1. Globally, the plann€@2 & 2 6 2 S O i AR8tarid dpladnfigcycléisbagyirat timetp by calling
PlanUpdate
2. The planner determines split timets and planningduration dt. It is required thats >tp + dt.



3. The planner tries to compute a path starting frofis) andyQd. If unsuccessfuthe planning cycle
terminates with failure.

4. Otherwise, the planner requests that the path gets splitethe motion queuevia the
SendPathCallbackBase ~ mechanismThe queuehas an opportunityto rejectthe request such as if it
arrivesafter the current execution timer has incorrect configuration or velocit rejected splice is
signaled by returning false to the callback.

5. Returnto $ep 1.

The generisendPathCallbackBase  callback must be subclassed and implemented to make splice requests.
practice, properly implementing this callback requires locking and synchronization between threads1Jitleer
motion queue must be synchrared, or2) splice requests areritten to the ExecutionThread anda reply is
written to the Planning Thread (as donenmpPlannerCommandinterface  , the  result to SendPathCallbackBase IS
queried via golling mechanism

A planning cycle can be interrupted with te@ppPlanning method. This is useful to maintain responsiveness to
changing user input.

There are two policies for determining the planning duration: constant and adaptireen using samplirgased
planners waecommend using the adaptive time stepping mechanism because it adapts to planning problem
difficulty. For deterministic planners, a walhosen constant time step may be more appropriate.



8. CONTROL

/ 2y GNREfSNA LINRGPARS (KS gadthatasensor§ and fainersiieKate verdiksemiak OF N2 «
to planners in that they generate controls for the robot, but tiain difference is thaa controller is expected to
work onlineand synchronouslwithin a fixed small time budgetAs a result, thy can only perform relativellight

computations

8.1.ACTUATORS

At the lowest level, a robot is controlled hgtuators Thesereceive instructions from the controller anmoduce

link torques that are used by the simulataf.f I Yswggoiits three types of actuator:

9 Torque controaccepts torques and feeds them directly to links.

1 PID controbccepts a desired joint value and velocity and uses a PID control loop to compute link torques
servo to the desired positiorisain constants kK|, and kD should be tuned for behavior similar to those

of the physical robotPID controllers may also accdpedforward torques
f Locked velocitgontroldrives a link at a fixed velocitExperimental(Ndi SY G KA & A &
velocity cotrol which feeds a piecewise linear pathddP1D controller

RATFSNBY

Note that the PID control and locked velocity control loops are performed as fast as possible with the simulation
time step.This rate is typically faster than that of the robot controlldene a PID controlled actuator typically
performs better (rejects disturbances faster, is less prone to instability) than a torque controlled actuator with a

simulated PID loop at the controller level.

Important WhenusingY f I Yd_pfpibtype behaviors foa physical robotthe simulatedactuators should be
OF f A6 NI GSR (0 2 tru¥ldawdévéd maiok ehaid@s csel) ds possiblieis alsothe responsibility of

the user to ensure that the controller uses the simulated actuators in the sameofaakit would usethe NP
physicalactuators For examplefor aPID controlled robotvith no feedforward torque capabilities, it would

020 Qa
not be

appropriate to use torque controh Y f | YILdQabot does not allow changing tfRtDgains, then iwould not be
appropriate to do so itv £ | YM.8QHi ¥vilD@od automatically configure your controller for compatibility with the

physical actuators, nor will @omplain ifsucherrors are made

C++API TheRobotMotorCcommand  (Klampt/Control /Command.h) structure contains a list ofctuatorCommands
that arethen processed by the simulator

8.2.SENSORS

Y f | Ytad@mulatea handful ofsensors typically found on robots. i ( KS dzid SN a ,theg @3St 2F | 06 &(

generically provide streaming numerieadlued measwments.lt is up to the user to process these raw
measuremens into meaningful information.

The following sensors are natively supported:

9 JointPositionSensor : Standard joint encoders.

9 Joint Velocity Sensor : Velocity sensorddere velocities are treated rameasurements, not differenced

from a position encoder, and hence they are rarely found in realHiéevever, these will be good
approximations of differenced velocity estimates from higke encoders.



1 DriverTorqueSensor T2 NJj dz§& TSR o Ootors¥NBY | NRo2dGQa Y

ContactSensor : A contact switcksensor defined over a rectangular patch

ForceTorqueSensor Y | T2 NOSk i 2 NJj dz§ && Yeicankfiguredito réporN@uefidr Hto 2 2 A Y i
6DOF.

Accelerometer  : An accelerometerCan be configured to report uads from 1 to 3 channels.

TiltSensor ;A tilt sensorCan be configured to report values from 1 to 2 axes, and optionally tilt rates.

GyroSensor : A gyroscopeCan be configured to report accelerations, velocities, or absolute rotations.

IMUSensor : An inertal measurement unit that uses an accelerometer and/or gyroscope to provide
SadAYFGSa 2F | tAy1Qa Gl jllanthe hdpd thatag yiot profided Bhyihéd RS NA Ot
accelerometer / gyro using either integration or differencing.
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! NE cesdr@ré dydamically configured vianaXMLtag of the form<sensor s> < TheSensorType
name=0so0ome andmda& 0v al uefsengors¥ > Each of the atibute/value pairs is fed to the
a Sy asaNdda  method, and detailon sensorspecific settingsire found in the documentation in
Control/Sensor.h.

TheseXML strings can be inserted into .rob files under agiagerty sensors [file] , URDF filg under the
<klampt> element, orworld XML files under thesimulation>  and<robot> elements

8.3.CONTROLLERS

The number of ways in which a robot may be controlled is infigitel carrange from extremely simplemethods
e.g., a linear gain, to extremely coregbnes e.g. an operational space controller or a learned poWet, al
controllersare structuredasa simple callbacloop: repeatedlyread off sensor datgperform some processingnd
write motor commandsThe implementation of thénternal procesigisopento the user

Default motion queuecontroller. The default controller for each robot is a

FeedforwardPolynomial PathController ~, which simulatesypical controllers for industrial robots. This is a
motion-queued controller with optional feedforward torques. It supports piecewise linear and piecewise cubic
interpolation, as well as timeptimal acceleratiorbounded trajectories.

C++ APIAny contoller must subclass theobotController class(Klampt/Control /Controller.h’) and overload
the update method. The membersensors andcommandare available for the subclass to usehe basic control
loop repeatedly executes:

1. TheRobotSensors * sensors StructuNB A& FAf € SR Ay @rdphydiddlobor t | YLIQG & A Ydz
2. TheRobotController.Update method is called. Here, the controller should fill in the

Robot Motor Commandg command Structure as necessary.
3. Thecommandd G NHzOG dzNS A& NBFR 2FF o6& (GKS YEIFYLQG aAivydz I GA:

Python APIBy default, thesimRobotController class implements BeedforwardPolynomial ~ PathController . The
setMilestone  andaddMilestone  methods set and append a new destination milestdo the motion queue,
respectively. Thelampt.model.trajectory.execute_trajectory function helps execute trajectories or arising
from planners. However, this behavior can be overridden using thddgelsetPIDCommand and
setTorqueCommand functions.



Todefine a custontontroller, the usershouldimplement a custom control loop. At every time step, read the
NPo20Qa aSyaz2NhAIZX GenseddaheSconird 6 therabgtviliRsirIColnmAnR or
setTorqueCommand methods.

(Note: One limitatiorof the API is that it is impossible to have certain joints controlled by a motion queue, while
others are controlled by PID commands.)

Dynamially loadable controllersControllers can be dynamically and automatically loaded from world XML files
via a stteement oftheform< cont r ol | er TheGoptrelero Typed attr l=ovalueo €& [ >
under the <simulation>  and<robot> elements.The following controllers are supported:

1 JointTrackingControllgKlampt/Control /JointTrackingController.h): a simpleopenloop controllerthat
accepts a desired setpoint

1 MilestonePathControllgiKlampt/Control /PathController.h): an openloop controller based on a
DynamicPath trajectory queue.

1 PolynomialPathControlléKlampt/Control /PathController.h): an openloop controller based on a
PiecewisePolynomialSpline trajectory queue Somewhat more flexible thamilestonePathController

1 FeedforwardJointTrackingControllgdampt/Control /FeedforwardController.h): a controller that
additionally computes feedforwartbrquesfor gravity compensation and acceleration compensation.
Works properly only with fixethased robotsOtherwise works exactly likeintTrackingController

1 FeedforwardMilestonePathControllesee above.

FeedforwardPolynomialPathControllsee above.

1 SeridController(Klampt/Control / SerialController.h): athin communication layethat serves sensor
data and accepts commands to/from a cliemintrollerthrough a serial interface. It listens on the port
given bythe settingservaddr and sendsensor data at the rateriteRate  (in Hz) Sensor data and
commands are converted to/from JSON format, in a form that is compatible with the Python API
dictionaries used by th&ampt.control.BaseController class (see also
Klampt/Python/control/controlle r.py).

]

New controller types can also be defined for dynamic loading in world XML files using the
RobotControllerFactory::Register( name,ptr ) function. Thishookmust be called before the world file is
loaded.Afterward, the specified controller type will bastantiatedwhenever the registered type appears in the
world file.

Generic aternal interfaces.Optionally, controllers may expose various configuration settings to be loaded from
XML files by implementing thesettings methods.(These may also be manijated by GUI programs and higher
level controllers/planners)They may also accept arbitrary external commands by overloadingdtemand*
methods

8.4.STATE ESTIMATION

Controllers may or may not perform state estimatidirstate estimation is performedt is good practice to define
the state estimator as independent of the controller, such as via a subclassa$tateEstimator . The
RobotStateEstimator interface is fairly sparse, but the calling convention helps standardize their use in
controllers.



Using state etimators. Controllers should instantiate a state estimator explicitly on constructinside the
Update callback, the controller should:

1. CallRobotStateEstimator . ReadSensors (*sensors) , thenUpdateModel() to updatetheNB 6 2 1 Q& Y2 RSt @
2. Read ofthe estimated state of the robot model (and potentially other information computed by the state

estimator, such as uncertainty levels) and compute its command as usual.
3. Just before returning, call theeadCommand(*command) andAdvance(dty methods on the

RobotStateEstimator object.

A few experimental state estimators are availaliiéniscientStateEstimator gives the entire actual robot state
to the controller, regardless of the sensors available to the robeigratedStateEstimator augments
accelerometersand gyros with an integrator thdties to track true positionThese integrators are then merged (in
a rather simpleminded way) to produce the final model.



9. CONTROLLER INTEGFON |
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a physical robat

9.1.CONNECINGAN EXTERNAL CONTRERTIO AY [ ! a SIMULATED ROBOT

There arethree optionsfor doing so (plus a fourth variant)

1. Direct instantiation in C++You must define a subclassrabotController and perform all necessary
processing initspdate YSGK2R® 6¢2 AYydiS3INIGS 6A0GK {AY¢eSaild &2dz vd

2. Direct instantiation in Python This can be done manually in the simulation loop by sendingt®iduie
commands to the simulator, or it can be done by subclassingdhéoller.py interface used by
simtest.py as described in Sectidgrror! Reference source not found.

3.  Socket communication with controllerThis interface allows you to communicate directly v@imTest
To do soa robotis given aserialController controller, which acts as a relay to an external clibgt
sending sensor data and receiving motor commands over a socket. Data is senali@&N format.

4. (anotherinstance of method 3) ROS joint_trajectory and joint_state messadéwese are supported in
SimTest i a SeriaController and theosserialrelay.py script, or insimtest.py using theroscontroller.py
script.

More details for each of the methods are given below.

Direct instantiation in C++Once you have created your new controller, a new controller object of your class
should be sent to th&vorldSimulation.SetController() method when launching your own simulation. Or, the
controller can be registered usim@botControllerFactory::Register as described in Sectidh3, and its type
can be specified in the world XML file.

Directinstantiation in Python.See Sectiokirror! Reference source not foundbr details.

Socket communication with controllerThis procedure consists of first setting a robot to use a SerialController
controller, and writing a binding for yowexternal controller to connect to the server socket, and process messages
using thecontrollercommunication protoco{CCPgovered in Sectiof.2
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Figure 10 Connecting an external controller to a simulated robot via a socket communicatic
protocolwith a SerialController controller.

As an exampleconsideran external Python controller.

1. Run./SimTest data/tx90serialinput.xml in one window The SerialController controller in SimTest
will listen for clients to connect to localhost:3456 (the portpedfied in the world XML fileYOnce a
client connects, it will writessensor messagée the socket at a fixed rate and then reces@mmand
message$rom the socket as they are generated.

2. Run python Python/control/serialcontroller.py data/motions/tx90sw ay.txt in anotherwindow.
Thisscript connects as a client and begins receig@igsor messages/er the socket, processes thein
this case using a trajectory controllegnd sendshe resultingcommand messagdsack over the socket.

ROS communicatiowith controller. Therosserialrelay.py scriptruns a daemon to relay ROS messages to a

SerialController. It reads positipkelocity, and/or feedforward torqueommanddrom the

/[robot_name]/joint_trajectory ROS topic and writesensedoint states to the/[robot_name]/joint_states

ROS topidt directly translates these items to a SerialController on localhost:3456 by defsulisual, you may

a0F NI dzLd GKS {SNRFf/2yGNREtSNI GKNRdzZZIK {AY¢Sakaiana 2y i NP
controller via the world XML file.

A more direct methodor use in thesimtest.py controller interfaceis provided by theoscontroller.py script. It
functions nearly identically toosserialrelay.py, but without the needo communicate over a socket to edit
XML files teset upthe SerialControllemstance

Note that in both cases, you must build thempt ROS package (a Catkin workspace has already been provided
for you inthe Python/Control/ klampt_catkinfolder), and useosrun to start the scriptsPlease refer to the
ROS documentation for details.
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Figure 11 Connecting an external controller to a simulated robot via ROS.

9.2.CONTROLLER COMMUNION PROTOCQCCP)

Asensor message astructurewith the following elemend:

9 t:the current simulation time.
1 dt:the controller time step.

f qf GKS NRO20GQA
f dgY GKS NRoz2i0Qa
f gmdKS NRo620GQA
f dgemd:0 KS NRBO20Qa
1

O dzNNEB vy i
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Thenames of each sensors in the simulated robot controller, mapped to a list of its measurements.

Acommand messagis astructurewhich contains one of the following combinationskefys signifying which type

of joint control should be used:

qcmd: use Pl cotrol.
gemd anddgemd: use PID control.

=A =4 =4 4 -4

torquecmd : USe torque control.

gemd, dgemd, and torquecmduse PID control with feedforward torques.
dgemd andtemd : perform velocity controlvith the given actuator velocitiegexecutedor time temd .

Each command key (excepind ) must be associated with a list difiver values. Note that these are driver values
rather than configuration values; as a result the controller must be aware of which drivers are present in the .rob

file (as well as their dering).



CCHnessages are serialized in JSON format for socket communiedtioa SerialControlleror as Python
dictionaries as used isimtest.py.

93/ hbb9/ ¢LbD CONTROLLAEROTO A BKLAL ROBOT

Toconnect aY f I Yead@ofier to a physical roboa wrapperaround the controloop should repeatedly filin the
O2y (i NBf t SNI & tha ghysia? ddda, Ritd iviithe BdtBtor commands to the physical motors.

The standard interface is given in thentrolledRobot ~ base class iKlampt/Control/Co ntrolledRobot.h. Your
subclass should override thet , ReadSensorData , andwriteCommandData methods to provide whatever code is
necessary to communicate with your rob&eeExamples/cartpole.cppfor an example.

Simulated robot Physical robot

Klamp®Rcontroller Klamp®controller

RobotMotorCommanc RobotSensors
structure structure

RobotMotorCommanc RobotSensors
structure structure

Subclass of

ControlledRobotSimulato ControlledRobot

Sensor
PID emulatc
emulator

Simulation engin

Physical robot

Figure 12 [/ 2y ySOGAyY3a | Yt YLIQG O2y iNRffSNI (2

9.4.CONNECBID ! Y[ ! at QTO A CONDROQLER

A planner can communicate asynchronouslth a controller inreaktime usingseveral methodsThegeneral
technique is to instantiate planning threadhat sends / receives information with the controller whenever
planning is completed

As an example, consider theaktime planning classes lanning/RealTimePlainer.h and their interfaces in
Interface/Userlnterface.h. Thereal time planners send trajectory information to the controller via a
MotionQueuelnterface , Whichjust relays information to th@olynomialPathController in the simulation.

[The reason why thimterface is used rather than communicating directly withonomialPathController is
that it is possible to implement iotionQueuelnterface to send trajectory data to the robot directly. The real
time planning demogroduced by the IMlon the physical X90L robot use iotionQueuelnterface that



communicates with the real controller over Ethernet via a simple serial API. This approach often saves bandwidth
over implementing aontrolledRobot  subclass.]



10.C++ PROGRAMMING

Y £ | Yshdfdtien in C++, and irgy C++ will give you fudccess to its functionalityut, itdoes requirecomfort
with large code basesnd moderateto-advanced C++ programming abilities

Here are some conventions and suggestions for program@irgpps that usey £ I Y LIQ {

1 Use adebugger (e.g., GDB) to debug crashes.

1 Use STL and smart pointeksisLibrary/utils/SmartPointer.h ) rather than managing memory yourself.

1 KirisLibrary contains a lot of functionality, including linear algebra routines, 3D math, optimization,
geometric rouines,OpenGL drawinggtatistics, and graph structureBrowse KrisLibrary before you
reinvent the wheel.

1 Avoid hardcoding.A much better practice is to place all settings into a class (e.g., with a
robotLeftHandXOffsetAmount member) that gets initialized 2 I RSTFIF dzf G @F f dzSf Ay (KS
you need to harecode values, define them asnst static variables omdefines  at the top of your file.
Name them descriptivelye.g.,gRobotLeftHand ~ XOffsetAmount  is much better tharshit  or (God forbid)
that Stupid Variable , whenyou come back to the file a month from now.

1 Themain() function inKlampt/Main /simtest.cpp is a good reference for setting up a world and a
simulation from commandine arguments.

11.PYTHONPROGRAMMING

TheKlampt/Python folder contains a Python API fgrf I YHal(simuch cleaner and easier to work with than
the C++ APFor beginners or for rapid prototyping, this is the best API to Hsevever, it does not contain all of
the functionality of the C++ API

Missing featires include:

Advanced IK constraint types

Trajectory optimization

Some contact processing algorithms

Robot reachability bound determination

Advanced force/torque balance solvers

Advanced motion planners (optimal planning with custom objective functkinsdynamic planning, etc)
5ANBOG | O00Saa (2 | NBo20Qa GNI2SO02NER |jdzSdzSo
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11.1. THEKLAMPTMODULE
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imports several classes that wrap C++ functionality via SWIG. Users will typicallyloathiadel , construct a

Simulator , and implement a robot controller by interacting with tBenRobotController . They may also wish to

usethe RobotModel to compute forward kinematics and dynamics.

It should be noted that the documentation of these basic classes are found undelatigt.robotsim
submodule. Their online documentation may also look somewhat strange for Python users, beiincpnverted
from C++ comments via SWIG.



Other native Python modules exist for a whole host of other functions, such as computing IK solutions via the
klampt.modelik module or do other kinds of planning tasks Wampt.plan.robotplanning module.

11.2. SUBMODULES

Submodules ofklampt includemath, model, io, plan, sim, andvis. Submodules not discusseglsewhereare as
follows:

1 model.cartesian_trajectory reliable Cartesian interpolation functions between arbitrary task space
points. Also defines®2 Yy @Sy A Sy (i a0 dzY L)X  F-dpyod piath2ty acliiekd aliaskd@ RA F& 22 A
displacement.

1 modelcollide: defines avorldCollider ~ class that enables querying the collision status of the world and
subsets of bodies in the world.

1 modelconfig: a uniforminterface for determining a flattened list of floats describing the configuration of
a world entity, a mathematical object, or an IK goal.

1 modelcontact allows querying contact maps from a simulator and computing wrench mataceis
equilibriumtesting

1 model.coordinates a coordinate transform manager, similar to the tf module in ROS, that lets you attach
points / vectors to frames and determine relative or world coordinates.

1 modelhold.py: defines aHold class and writes / reads holds to / from disk.

1 modelik: convenience routinefor setting up and solving IK constrainfge do not yet allow solving
across multiple robots and objects but this functionality may be supported in the future.

1 model.map: convenient objecbriented interface for accessing wds, robots, objects, links, etc. For
example, you can write

wm = map.map(world)
wm.robots[0].links[4].transform

instead of

world.robot(0).getLink(4).getTransform().

Most notably used in theim.batchmodule.

1 model.sensing functions for processing simated sensor data.

1 model.subrobot a class that iBobotModel -like but only modifieselecteddegrees of freedom of the

robot (e.g., an arm, a legMany klampt module functions accepibRobotModels in the place of

RobotModels .

model.typesNB G NA SGAyYy I GKS NBA2dzNDOS YIylF3ISNI eSS aagNrRy3a ¥
ioloading Fdzy OGA2ya F2NJ f 21 RAY 3k and@rxigkih bothinativelfd@mat agdo 2 SOG a
JSON formats

io.resource: functionsF 2 NJ £ 2 RAY 3k & @ekoyirBes. SRAGAY I Y I YLIQU
plan.cspaceutilscontains helpers for constructing compositspaces and slices of Spaces.

sim.batch functions for batch MonteCarlo simulation of many simulation initial conditions.

sim.settle: convenience functions to let objects fall undgavity and extract their equilibrium

configurations.

1 sim.simlog simulation logging classes (used in SimpleSimulator)

=a =4
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9 sim.simulation: a more fulifeatured simulation class than standard Simulation. Defines sensor and
actuator emulators, suistep force appers, etc.

Theklampt module does notyet) contain interfacedo trajectory optimizationand state estimation
11.3. VISUALIZATION
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1 Method 1 use the klampt.vis scene manager.
1 Method 2:overload GLPIlugininterfa@nd customize thevent handling andirawing routines

Method 1 is much easier to set up, and is more intuitive for users who may be unfamilighe/gkent-driven
paradigm used in GUI programmingsing the scene managéeUlwindows pop up iraseparate visualization
thread, and the main thread can add and remove items togtene manageiSimple functions are available to
build multirviewport GUIs, to customize appearances, control animations, and other visualizatiorofsnéior
more informationsee thedocumentation ofklampt.vis.visualization, and theexample code in
Klampt/Python/ demos/vistemplate.py.

In Method 2, users will need to override the event handling functions to draw, process mouse and keyboard input,
etc.. ASNE FINBE Ffaz2 ¢StO02YS (2 dzasS Yil YLIQG 2062S0G hLISyD]
see the documentation dflampt.vis.glinterface, and thesimple example fil&lampt/Python/ demos/gltest.py.

A hybrid of Method 1 and Method 2 &soavailable inKlampt/Python/demos/visplugin.py . This hybrid
approach is primarily used to customize how the scene manager responds to user input.

11.4. UTILITIES AND DEMOS

ThePython/ utils and Python/demos folders containa few exampleutilities andprograms that can be built upon
to start getting a flavor of programming I Yapgiations in Python.

1 demos/gltest.py: a simple simulation with force sensor output.

1 demos/gltemplate.py: a simulation with GUI hooks and moud&king capabilities.

1 demos/kbdrive.py: drive a simulated robot around using the keyboard. The first 10 joints can be driven
Al I LRAAGAGS @St20A0e 6A0GK GKS (2L) NRPg 2F 1Sea
1883 jX6IX3LIp

1 demos/robotiq.py: modeling and simulatopthe RobotiQ dinger Adaptive Gripper. This code emulates

the underactuated transmission mechanism of each finger.

demos/robotiqtest.py: performs a simulation of the RobotiQ gripp#osing and opening on an object

demos/simtest.py: an imitation ofSimTest program programmed entirely in Python, and an entry point

to fast prototyping of controllers using the Python API.

demos/sphero.py: simulates the Sphero 2.0 robot driving around.

demos/vistemplate.py: demonstrates how to use the basic interfacethe visualization module.

demos/visplugin.py: demonstrates how to develop plugins for the visualization module.

utils/config_to_driver_trajectory.py: converts a linear path from configuration space (# of DOF) to driver
space (# of actuators).
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9 utils/driver_to_config_trajectory.py: converts a linear path from driver space (# of actuators) to
configuration space (# of DOF).

1 utils/discretize_path.py: splits a linear path into a fixed tirdomain discretization.

1 utils/make_thumbnails.py: generatestiumbnails of a folder full of world, robot, object files, etc.

9 utils/ multipath_to_path.py simple script to convert &ultiPath  to a timed milestone trajectory.
Parameters at the top of the script govern the speed of the trajectory.

9 utils/ multipath_to_timed_multipath.py. simple script to convert BultiPath  to a timedMultiPath
Parameters at the top of the script govern the speed of the trajectory.

1 utils/tri2off.py : converts oldstyle .tri files to .off files.

Like the compiled SimTestimtest.py simulaies a world file and possibly robot trajectories. The user interface is a
AAYLE AFTASR {AY¢Sads 6AGK waQ o S3Ay ydiagghg applies drfritg fiofcesy
to the robot.

11.5 EXPERIMENTAL CONTIEER.API

simtest.py also acceptarbitrary feedback controllers given as input. To do so, give it a .py file with a single
make(robot) ~ function that returns a controller object. This object should be an instance of a subclass
BaseController  in control.controller. For example, to see a controller that interfaces with ROS, see
control/roscontroller.py .

A Python controller is a very simple object with three important methods:

9 output(self,**inputs) : given a set of named inputs, produce a dictionary of named outpLite.
semantics of the inputs and outputs are defined by the caller.

9 advance(self,**inputs) : advance by a single time step, performing any necessary changes to the
02y i NRf { D& SholldiN®®changeternalstate!

9 signal(self,type,**input s) . sendssome asynchronous signal to the controller. The usage is caller

dependent. (This method is never called directlysbytest.py.)

Forsimtest.py, the inputs tooutput andadvance will be a sensor message as described in the controller
communicaton protocol (CCP) in Secti®r2. The arguments are Python dictionariesmtest.py expects output
to return a dictionary that represents a command messageeassiibed in the CCP.

Internally the controller can produce arbitrarily complex behavior. Several common design patterns are
implemented incontrol/controller.py :

9  TimedControllerSequence ' runs a sequence of sutontrollers, switching at predefined times.

1  MultiController : runs several sugontrollers in parallel, with the output of one swudontroller cascading
into the input of another. For example, a state estimator could produce a better state estinfiate
another controller.

1 ComposeController  : composes several sukectors in the input into a single vector in the output. Most
often used as the last stage ofvaltiController when several parts of the body are controlled with
different subcontrollers.

9 LinearController > outputs a linear functiorof some number of inputs.

1 LambdaController :outputsf (ar g1, ¢, farany arbitrary Python function.



9  StateMachineController : a base class for a finite state machine controller. The subclass must determine
when to transition between swoontrollers.

1 TransitionStateMachineController : a finite state machine controller with an explicit matrix of
transition conditions.

A trajectory tracking controller is given in control/trajectory_controller.py.mhge function accepts a robot model
(optionally Nonepnd a linear path file name.

A preliminary velociypased operational space controller is implemented in
control/OperationalSpaceController.py, but its use is highly experimentai the moment



12.FREQUENTLY ASKED SUBNSFAQ)

12.1. SHOULD | LEARN THETHON BNDINGS OR C++7?

This ignostlya matter of preferencePython tenddo be cleaner, easier to use, and faster for prototyping

Howeverthe Python bindigs providea strict subset of the C++ functionality.

12.2. HOW DO | SET UP SBEIRS IN THE SIMULATAYD READHEM?

Sensors arset up in theproperty sensors line of therobot file or world XML fileSee Sectiom 5.13and8.2for
more details, and sedata/robots/huboplus/huboplus_col.rob anddata/simulation_test walds.xml for some

examples. Sensors can be debugged and drawRabotTest

C++ APITo read sensor datdeclare a variableector<double> measurements and callworldSimulation.
controlSimulators[robotindex].sensors.GetNamedSensor(sensorName) - >GetMeasu rements(measurements  );

Python ARITo read sensors in Python, call

Simulator.  controller(robotindex).getNamedSensor(sensorName).getMeasurements()

12.3. MY SIMULATOR &3 UNSTABIMAND ORCRASHES. HELP!

There are two reasons that the simulator may go unstabl¢hd simulated robot is controlled in an inherently
unstable manner, or 2) rigid body simulation artifacts due to poor collision handling or numerical errors. The
second reason may also cause ODE to crash, typically on Linux systems. In testing we kabhafaconfiguring

ODE with double precision fixes such crashes.

Unstable robotan unstably controlled robot will oscillate and jitteaind f these oscillations become violent
enough they may also cause rigid bodtydation instability/crashing. If theobot goes unstable, then i8ID
constants andiryFriction  /viscousFriction terms need to be tunedThesevaluesmust be setarefully in order

to avoid oscillation andgdeally shouldd S OF t A6 N> G SR | 3+ Ayad GKS

LIKana A Ol f

entirely manual process that must be done for every new roBgsta rule of thumbargePIDdampirg terms are

usually problematicand should be emulated as viscous friction

Collision handlingrrors Y f | YusdQaicontact handling method whereiaah mesh is wrapped within a thin
boundary layethat is used for collision detectiohVhen objects make contact only along theoundary layes,

the simulation is robust, but if theunderlying meshes penetratene anotherthen the simulator must fall back to
less rolust contact detection methods'his occur# objects are moving too quickly or light objects in contact are
subject to high comessive forcesif this happensy f | YailD@riint awarningof the forméODECusmMesh:
Triangles penetrate margd{ cannot trust contact detectér¢ KS & A Ydzf | G2NJ adl ddza oAt f

To avoid penetration, therare two remedies: 1) increase the thickness of the boundary layer, or 2) make the

boundary layer stifferSee Section 8 for more details on how to implement thigses

12.4. THE SIMULATOR RUN®®/LY. HOW CAN | MAKT FASTER?

Y2z
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Unless you are simulating a huge number of joints, the limiting steps in simulation are usually contact detection
and calculating the cdact response.

The speed of contact detection is governed by the resolution of the meshes in contact. Simpler meshes will lead to
faster contact detection. Most 3D modeling packages will provide mesh simplification operators

The speed of contact respon&gegoverned by the number of contact points retained in the contact handling
procedure after clustering. TheaxContacts simulation parameter governs the number of clusters and can be
reduced to achieve a faster simulation. However, setting this valuéoteavill lead to a loss of physical realism.

12.5. HOW DO | IMPLEMENTBEHAVIOR SCRIPT?

Many engineers andtudents tend to approach robotidENR Y I G aONR LIGAYy 3¢ | LILINRIF OKSE 6K
is broken down into a script or state machine of painstakihgiydtuned, heuristic behaviors. Unlilsomeother

LI O1F3Saz YfIYLIQIG R2Sa y2aG GNB (2 YIS aONARLIIAYy3d 02y @S
discourage the use of heuristic behaviors. The philosophy isdvad-tuned behaviors should bare in intelligent

robots However, it is true that scripts / state machines are sometithesasiest way to accomplish a given

behavior withthe current generation ofobot Al tools

¢2 AYLX SYSy(d | 0S5 kthe@Bckig shbuil OeNAundien & sépahte thréddl@dimXhe execution
thread. It can then monitor the state of the execution thread (e.g., waiting for a movement to finish) and react
accordinglyFor those newio threading, please see the C++ classédsrisLibrary/utils/threadutils.h  or the
Pythonthreading module for more information.

To implement a state machina,controller should manually maintain and simulé@tebehavior in its feedback
loop. A framework for such controllers tlsgateMachineContro  ller  class irPython/control/controller.py .



13.RECIPE&| h2 5h L XKD

13.1. GENERATEPATH/TRAJECTORY FRE®KEYFRAMES

The easiest way to generate a path by hand is to define keyframes RabetPoseprogram.
The Qt GUI makes it easy:

Create a Configs resouréeO £ f Al aYAf SalzySaédovo

I NBIFGS F /2yFA3 NBaz2dz2NOS oO0Fff Al aYAtSalz2ySmeéo | YR

t2aS GKS NRo2d Fa RSAANBRI YR gKAES aYAfSadz2ySwmé A

Repeat steps 2 and 3 for as many milestones asatbdJse drag and drop to order the milestones as

necessary.

f 60dzy iAYSR LI GKO 2KAtS asStSOGAy3d GKS avyAratSaltzySaé NBa
Select MultiPath or Linear Path as desired.

T 6GAYSR LI GKO 2KAES &StCSFl AQE GiK Si KASY Adf hSLAGIARYWAS aS¢  NaSdaiizid

I Save the resulting new resource.

= =4 =4 =

It Qt is not available, this can also be done in the GLUI GUI, but with moreTeadk. so:

1. 'aS GKS L12asSNI G2 Ll2asS {SeFfNlrYSazx FyR 2Liimadr 4§ KSasS (2
button. The keyframes will appearasnfig Q& ® bl YS GKSY | LILINRPLINRF G§Sfe& o0Sdac
andsavethemtodisWA I (G KS a{l.@S CAfS¢ odzilGzy

2. Concatenate all theconfigfiles into one.configsfile, e.g. using at keyframel. confi g &
keyframe N.config > keyframes.configs

3. Load the.configsfile from disk which gives a newonfig Set  resource in the Resource Library.

4. [optional] Set up any IK constraints in the poser that you wish the path to obey.

5. (for an untimed pathClickd / NB I (i S gendrate & aew in®rpolating patfThis will create a new
Multipath ~ resource in the Resource Library.

6. (foratimedpath)@ka h LIGA YAT S t I (K éintefipBlatidhyBaje&ant: 6 S | ySé

Name the Multipath and save it to disk.

8. [optional] If you prefer aihear path, your | @ &St SOG GKS adzZ GALI GK=E Ot A01 al
G[AYSEFENI FiKé 6KSY LINPYLIISR Ay (G(KS O2YYIFIYyR fAySo

™~

13.2. ANIMATE ANDEO OF RATH/TRAJECTORY

Qt GUIIn RobotPose paths/trajectories can be played when selected in the Resource Library usingetfia

controls in the lower right,. Ruit . / Robot Pose [wor |l d f i loardseleq the path.f i | e ]

' yOKSO]l GKS Ga5Nl ¢ 3AS2YSGNEBe odzidzy 2N Y2@0S GKS LI2aSN NJ
begin saving PPM screenshots to disk. These \iill be processed into a video file using a utility like ffmpeg once

recording is stopped.

Note: for best resultsvith your video encoderyou may have to set the frame sim@nuallyto a standard size
usingthe Camera menu.

GLUT GUIn RobotPosg paths/trajectories will be automatically animated when selected in the Resource Library.
Runii. / Robot Pose [worl d f i Idardseleq the path. fyiOKeSJ01 GKS a5N)} g 3IS2



odzii2y 2NJ Y2@0S (GKS LI2aSN] NBO 20 tdbédindavingPK ScyeenShot Gigk. G KS & { |
These files can thelne processed into a video file using a utility like ffmpeg.

Note: to change the default movie sileRobotPoséSimTest edit themoviewidth and movieHeight elements of
robotposesettings/ simtest.settings.

Python ARIThePython/demos/simtest.py program uses th&LSimulationPlugin visualization pluginwhich

aUFNI alF@Ay3a FTNIYSa FT2NI I Y2QAS maést manBlyiatdryoAte ahyQwe C2 NJ 1
imagefiles to disk. TheLProgram class in th&klampt.vis.glprogram module has aave_screen method that uses

the Python Imaging Library &ave the current OpenGL view to diSlkeePython/ demos/gltemplate.pyfor an

example.

13.3. SIMULATE THXECUTION OFKEYFRAMPBATH

In SimTest,rufi . / Si mTest [ wo ritodfig fstart cenfig file ] 71 milestones
[milestone path file] 0. A milestone path file consists of a list of T configuration / velocity pairs:

b lfModn8 bX Qlmeoase X @b wonb
X
b ljMo¢ B bX Dimard®8 X Db n¢ 6
Tostart and stop at each keyframe, set the velocities to zero.
Python ARISt up a simulator, then run:
for q in path:
sim. getController (0).add Milestone(q)
This will start and stop at each keyfrantiekeyframe velocities are given, run:
for (g,v) in path:

sim. getController (0).add Milestone(q,v)

13.4. SIMULATE THEXECUTION OFTRAJECTORY

In SimTestrunfi. / Si mTest [ wo rikodfig fstart cenfig file ] 71 path
[trajectory. file]o

Tips:

1 For the most precise control over the trajectory, use a Linear Path file¢iorea MultiPath.Otherwise,
SimTest will do some processing to assign tiarebthis may not generate the desired resulitie
Python/ utils/ multipath_to_timed_multipath.pyscript can be usetb generate timing using a
speedup/slowdown heuristic
1 To easilyextract the start configuration from a MultiPath, inpyt hon Pyt hon/ mul ti pat h.
s [trajectory file] >.start.configo

Python ARIIn Python/demos/ simtest.py, run fi./simtest.py [world file] [trajectory file] 0.



Manual operation Load arrajectory  object(seeklampt.modeltrajectory). During the control loopread the
simulation time §im.getTime() ), look up the configuration/velocity g/dq of the trajectory at that tirasing
(g,dg)=(traj.eval(t),traj.deriv(t)) , and then calim.getController(0).setPIDCom mand(q,dq)

You may alsoallexecute_trajectory in klampt.model.trajectory, oruse theTrajectoryController class in
control/trajectory_controller.py .

13.5. IMPLEMENT AULGTOMCONTROLLER

C++ APL.

1. Create a new subclass RfbotController andoverride at a minimum, theype method, whichprovides
a namefor the controller, and theuspdate method, whichreads from the sensors  member and writsto
the command member.

2. Add your controller to thelefault controllerfactory byadding the line
RobotControlleFactory:Register(new MyController(robot)) the
RobotControllerFactory::RegisterDefault method inControl/Controller.cpp.

3. Recompile SimTest.

4, b2¢g e2dz Oy &St GKS NRoz2GQa O2yGNRftSNIAY (KS 62NIR

<simulation><robot><controller ty pe=" [string returned by MyController  ::Type()] "/> .

Python ARISe thePython/ demos/gltemplate.pyfile for an empty methodontrol_loop  that provides a hook
that gets called everyt seconds and should be used for interacting with the controller.

Alternatively, if you wish to follow the standardized control API inRigghon/control module, please see Section
11.5

13.6. PROCESGLICKS ON THHOBOT ORVORLD

C++ RL Theworldview Widget class inMain/WorldViewProgram.h provides theHover method to determine the

Oft 2aSail 2062S0G I yR NERO 2-¥ipositiEnSThis @usthb@groSided Weiclrrert @BNGY 2 dza SQ & |
viewport (i.e., theviewport member of theGLUNavigationProgram or GLUINavigationProgram  classes).

Python ARITheGLPIlugininterface interface class allows users to call the method world , whichreturnsa

depth-sorted list of objectOf A O1 SR | {i-y (bitin. SeePgdo S @ @os/gltemplate.py for an example
of how to use it.



14. GENERARECOMMENDATIONS

1

Ask questionsind report issues/bugd his will help us make improvementsYof I YiLy@uiwrite a

piece of code that you think will be useful to others, consitheking it acontribution tothe library.
Practice selflocumenting codeNamefiles, functions, classes, and variables descriptiv€lgmment as
you go.

Usevisual debuggingo debug your algorithmdzor example, output intermediate configurations or paths
to disk and inspect them with the RobotPose progrankliampt.io.resource.edit()

Think statefullyDecompose your programs into algorithms, stagarameters, andlata. State is what the
algorithm changes during its runningarameters are values that are givas input to the algorithm when
it begins(arguments and settingsand they do not change during executi@ata is the knowledge
available to the algorithm and the information logged as a side effect of its execution.

When prototyping long actiosequences, build in functionality to sazed restorethe state of your
system at intermediate points.



15.WISHLIST

Y £ | Yslatkiolving project and we hope to grow and refine it in the future with the help of ottrartire
development ofy £ | YMilD€@dus on the following itemgn no particular order)

1 Monte-Carlo simulation generation and browsing for mechanism design, behavior evaluation, and
machine learning

More convenientmanipulationplanningsupport

Convenience routines for easidgynamicmotion planning

Unification of locomotion and manipulation planning

Specifying and solving optimization and optimal control problems

Sate estimatorsfor free-floating robots

Planning with sliding and rolling contacts

Rolling friction simulation

Expansiorof the PythonAPI (e.g.trajectory optimization realime planning
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