
Y[!atΩ¢ a!b¦![ ±лΦт 

KRIS HAUSER 

Document last updated: 3/30/2017 

CONTENTS 

1. ²Ƙŀǘ ƛǎ YƭŀƳǇΩǘΚ ................................................................................................................................................... 4 

1.1. Features ....................................................................................................................................................... 4 

1.2. Currently supported platforms .................................................................................................................... 4 

1.3. Comparison to related packages .................................................................................................................. 4 

1.4. ²ƘŀǘΩǎ ƴŜǿ ƛƴ ǾлΦтΚ ..................................................................................................................................... 5 

1.5. Contributors ................................................................................................................................................. 6 

2. 5ƻǿƴƭƻŀŘƛƴƎ ŀƴŘ ōǳƛƭŘƛƴƎ YƭŀƳǇΩǘ ....................................................................................................................... 7 

2.1. Linux-like Environments ............................................................................................................................... 7 

2.2. Windows ...................................................................................................................................................... 8 

3. wǳƴƴƛƴƎ YƭŀƳǇΩǘ ŀǇǇǎ ......................................................................................................................................... 11 

3.1. Interacting with 3D worlds ......................................................................................................................... 13 

3.2. Example files .............................................................................................................................................. 16 

3.3. Other YƭŀƳǇΩǘ ŀǇǇǎ .................................................................................................................................... 16 

4. Design philosophy ............................................................................................................................................... 18 

5. Modeling ............................................................................................................................................................. 19 

5.1. Math ........................................................................................................................................................... 19 

5.2. 3-D Geometry ............................................................................................................................................. 20 

5.3. Robots ........................................................................................................................................................ 22 

5.4. Terrains ...................................................................................................................................................... 25 



5.5. Rigid Objects .............................................................................................................................................. 26 

5.6. Worlds ........................................................................................................................................................ 26 

5.7. Paths and Trajectories ................................................................................................................................ 26 

5.8. Inverse Kinematics ..................................................................................................................................... 28 

5.9. Dynamics .................................................................................................................................................... 30 

5.10. Contacts ..................................................................................................................................................... 30 

5.11. Holds, Stances, and Grasps ........................................................................................................................ 31 

5.12. Resources and Resource Libraries .............................................................................................................. 31 

5.13. File Types .................................................................................................................................................... 32 

6. Simulation ........................................................................................................................................................... 39 

7. Planning .............................................................................................................................................................. 41 

7.1. Robot-level kinematic motion planning ..................................................................................................... 41 

7.2. Configuration Space kinematic motion planning ....................................................................................... 43 

7.3. Time-optimal acceleration-bounded trajectories ...................................................................................... 44 

7.4. Interpolation and time-optimization with closed-chain constraints (C++ only) ........................................ 45 

7.5. Randomized planning with closed-chain constraints ................................................................................. 45 

7.6. Time-scaling optimization (C++ only) ......................................................................................................... 46 

7.7. Real-time motion planning (C++ only) ....................................................................................................... 46 

8. Control ................................................................................................................................................................ 48 

8.1. Actuators .................................................................................................................................................... 48 

8.2. Sensors ....................................................................................................................................................... 48 

8.3. Controllers .................................................................................................................................................. 49 

8.4. State estimation ......................................................................................................................................... 50 

9. Controller Integration ......................................................................................................................................... 52 

9.1. /ƻƴƴŜŎǘƛƴƎ ŀƴ ŜȄǘŜǊƴŀƭ ŎƻƴǘǊƻƭƭŜǊ ǘƻ ŀ YƭŀƳǇΩǘ ǎƛƳǳƭŀǘŜŘ Ǌƻōƻǘ .............................................................. 52 

9.2. Controller communication protocol (CCP) ................................................................................................. 54 

9.3. /ƻƴƴŜŎǘƛƴƎ ŀ YƭŀƳǇΩǘ ŎƻƴǘǊƻƭƭŜǊ ǘƻ ŀ ǇƘȅǎƛŎŀƭ Ǌƻōƻǘ.................................................................................. 55 



9.4. /ƻƴƴŜŎǘƛƴƎ ŀ YƭŀƳǇΩǘ tƭŀƴƴŜǊ ǘƻ ŀ /ƻƴǘǊƻƭƭŜǊ............................................................................................ 55 

10. C++ Programming ........................................................................................................................................... 57 

11. Python Programming ...................................................................................................................................... 57 

11.1. The Klampt module .................................................................................................................................... 57 

11.2. Sub-Modules .............................................................................................................................................. 58 

11.3. Visualization ............................................................................................................................................... 59 

11.4. Utilities and Demos .................................................................................................................................... 59 

11.5 Experimental Controller API ....................................................................................................................... 60 

12. Frequently Asked Questions (FAQ) ................................................................................................................. 62 

12.1. Should I learn the Python bindings or C++? ............................................................................................... 62 

12.2. How do I set up sensors in the simulator and read them? ........................................................................ 62 

12.3. My simulator goes unstable and/or crashes. Help! ................................................................................... 62 

12.4. The simulator runs slowly. How can I make it faster? ............................................................................... 62 

12.5. How Do I implement a Behavior Script? .................................................................................................... 63 

13. wŜŎƛǇŜǎ όIƻǿ Řƻ LΧΚύ ..................................................................................................................................... 64 

13.1. Generate a path/trajectory from keyframes.............................................................................................. 64 

13.2. Animate a video of a path/trajectory ......................................................................................................... 64 

13.3. Simulate the execution of a keyframe path ............................................................................................... 65 

13.4. Simulate the execution of a trajectory ....................................................................................................... 65 

13.5. Implement a custom controller ................................................................................................................. 66 

13.6. Process clicks on the robot or world .......................................................................................................... 66 

14. General recommendations ............................................................................................................................. 67 

15. Wish list .......................................................................................................................................................... 68 

16. Papers and ǇǊƻƧŜŎǘǎ ǳǎƛƴƎ YƭŀƳǇΩǘ ................................................................................................................. 69 

 

  



1. WHAT IS Y[!atΩ¢? 

YƭŀƳǇΩǘ όYǊƛǎΩ [ƻŎƻƳƻǘƛƻƴ ŀƴŘ aŀƴƛǇǳƭŀǘƛƻƴ tƭŀƴƴƛƴƎ ¢ƻƻƭōƻȄύ is an open-source, cross-platform software package 

for robot modeling, simulating, planning, optimization, and visualization. It aims to provide an accessible, wide 

range of programming tools for learning robotics, analyzing robots, developing algorithms, and prototyping 

intelligent behaviors. It has particular strengths in robot manipulation and locomotion. 

Historically, it began development at Indiana University since 2009 primarily as a research platform. Beginning in 

2013 it has been used in education at Indiana University and Duke University. Since then, it has been adopted by 

other labs around the world, such as Stanford, University of Pisa, and Worcester Polytechnic Institute. It has been 

used in several real-world projects, including the DARPA Robotics Challenge, Amazon Picking Challenge (2015-

нлмсύΣ ǘƘŜ Lwh{ нлмс wƻōƻǘ DǊŀǎǇƛƴƎ ŀƴŘ aŀƴƛǇǳƭŀǘƛƻƴ /ƘŀƭƭŜƴƎŜΣ ŀƴŘ {ǘŀƴŦƻǊŘΩǎ {ƛƳDǊŀǎǇ ǘƻƻƭōƻȄΦ 

This manual is meant to give a high-ƭŜǾŜƭ ǊƻŀŘƳŀǇ ƻŦ ǘƘŜ ƭƛōǊŀǊȅΩǎ ŦǳƴŎǘƛƻƴŀƭƛǘȅ and should not be considered a 

replacement for the detailed API documentation. 

1.1. FEATURES 

¶ Unified C++ and Python package for robot modeling, kinematics, dynamics, control, motion planning, 

simulation, and visualization. 

¶ Supports legged and fixed-based robots.  

¶ Interoperable with Robot Operating System (ROS) and Open Motion Planning Library (OMPL). 

¶ Many sampling-based motion planners implemented. 

¶ Fast trajectory optimization routines. 

¶ Real-time motion planning routines. 

¶ Forward and inverse kinematics, forward and inverse dynamics 

¶ Contact mechanics computations (force closure, support polygons, stability of rigid bodies and actuated 

robots) 

¶ Planning models are fully decoupled from simulation models. This helps simulate uncertainty and 

modeling errors. 

¶ Robust rigid body simulation with triangle mesh / triangle mesh collisions. 

¶ Simulation of PID controlled, torque controlled, and velocity controlled motors. 

¶ Simulation of various sensors including cameras, depth sensors, laser range finders, gyroscopes, 

force/torque sensors, and accelerometers.  

1.2. CURRENTLY SUPPORTED PLATFORMS 

¶ *nux environments 

¶ Windows 

¶ MacOS  

Please let us know if you are able to compile on other platforms in order to help us support them in the future. 

1.3. COMPARISON TO RELATED PACKAGES 



¶ ROS (Robot Operating System) is a middleware system designed for distributed control of physical 

robotsΣ ŀƴŘ YƭŀƳǇΩǘ ƛǎ ŘŜǎƛƎƴŜŘ to be interoperable with it. Various ROS software packages can replicate 

Ƴŀƴȅ ƻŦ ǘƘŜ ŦǳƴŎǘƛƻƴǎ ƻŦ YƭŀƳǇΩǘ ǿƘŜƴ ǳǎŜŘ ǘƻƎŜǘƘŜǊ όDŀȊŜōƻΣ Y59Σ wǾƛȊΣ aƻǾŜLǘΗύΣ ōǳǘ ǘƘƛǎ ŀǇǇǊƻŀŎƘ ƛǎ 

difficult since these tools are not as tightly integrated as they are in YƭŀƳǇΩǘ. ROS has limited support for 

legged robots, and is poorly suited for prototyping high-rate feedback control systems. ROS is heavy-

weight, has a steep learning curve especially for non-CS students, and is also not completely cross-

platform (only Ubuntu is fully supported).  

¶ OpenRAVE (Robotics and Animation Virtual Environment) is similar to YƭŀƳǇΩǘ and was developed 

concurrently by a similar group at CMU. OpenRAVE has more sophisticated manipulation planning 

functionality. Does not support planning for legged robots, but simulation is possible with some effort. 

Simulation models are often conflated with planning models whereas in YƭŀƳǇΩǘ they are fully decoupled. 

OpenRAVE is no longer actively supported. 

¶ Gazebo, Webots, V-REP, etc are robot simulation packages built off of the same class of rigid body 

simulations as YƭŀƳǇΩǘ. They have more sophisticated sensor simulation capabilities, cleaner APIs, and 

nicer visualizations but are typically built for mobile robots and have limited functionality for modeling, 

planning, and optimization. YƭŀƳǇΩǘ also has improved mesh-mesh collision handling that makes collision 

handling much more stable. 

1.4. ²I!¢Ω{ b9² Lb ±лΦт? 

Version history: 

0.7 Latest version (3/24/2017) 

¶ Improved simulation stability, including adaptive time stepping and instability detection/recovery. 

¶ The proprietary .tri  geometry file format has been replaced with the Object File Format (OFF) for better 

compatibility with 3D modeling packages. 

¶ Simulated visual, depth, and laser range sensors are now fully supported. 

¶ ROS sensor simulation broadcasting is enabled in Klampt/IO/ROS.h. 

¶ World XML files can now be saved to disk. 

¶ Robot sensors and controllers can be attached directly to a robot model using the sensors  / controller  

ǇǊƻǇŜǊǘƛŜǎ ƛƴ ǘƘŜ ǊƻōƻǘΩǎ .rob or .urdf file. 

¶ The motion planning structure in KrisLibrary has been completely revamped in preparation for support of 

optimal and kinodynamic planning, but this should be a mostly transparent cƘŀƴƎŜ ǘƻ YƭŀƳǇΩǘ ǳǎŜǊǎΦ  

¶ The Python interface is now better organized.  However, the module structure is incompatible with code 

developed for versions 0.6.2 and earlier. In particular, math modules (vectorops , so3 , se3 ) are now in the 

klampt.math  subpackage, and visualization modules (glprogram , glrobotprogram , etc) are now in the 

klampt.vis  subpackage.  

¶ Custom Python simulations of sensors, actuators, and force appliers that work on fast simulation rates are 

easier to integrate with slower control loops in the klampt.sim.simulation  module. 

¶ Revamped and enhanced Python visualization functionality in the klampt.vis  module. Multiple windows, 

simultaneous viewports, trajectory visualization, custom in-visualization plotting, automatic viewport 

determination, and thumbnail saving are now supported. 

¶ Cartesian trajectory generation, file loading utilities are added to Python. 

0.6.2 (7/31/2016) 



¶ New Python APIs for visualization 

¶ Geometry caching helps load times and memory usage for large scenes 

¶ A global IK solver has been added to the Python API 

¶ ROS broadcasting / subscribing is enabled in the C++ API. 

0.6.1 (3/21/2015) 

¶ Added functionality in Python API to load/save/edit resources, manipulate transforms and robot 

configurations via widgets, change appearance of objects, and run programs through Qt. 

¶ Removed the Python collide module. All prior functionality is now placed in the Geometry3D class in the 

standard klampt module. 

¶ Real-time planning interface has been greatly simplified. 

¶ The MilestonePathController class will be deprecated, use PolynomialPathController instead. 

¶ Minor bug fixes 

0.6. (7/4/2014) 

¶ CMake build system makes it easier to build across multiple platforms 

¶ Easy connections with external controllers via ROS or a serial protocol 

¶ More user-friendly Qt application front ends  

¶ More demos, example code, and tutorials 

¶ Direct loading of URDF files with <klampt> XML tag 

¶ More calibrated robots: Baxter, RobotiQ 3-finger adaptive gripper 

¶ Unification of locomotion and manipulation via the GeneralizedRobot mechanism 

¶ Fixed build for Cygwin 

¶ More sophisticated logging capabilities in SimTest (contacts, commanded/actual/sensed paths) 

¶ Miscellaneous debugging throughout 

0.5. Initial release (11/17/2013) 

1.5. CONTRIBUTORS 

Kris Hauser has been the primary maintainer throughout the project. Other major contributors include Jordan 

Tritell, Jingru Luo, and Alessio Rocchi. 

Adam Konnecker, Cam Allen, Steve Kuznetsov have helped with the Mac build. 

As an open-source project, we welcome contributions and suggestions from the community. 

  



2. DOWNLOADING AND BUILDING Y[!atΩ¢ 

YƭŀƳǇΩǘ is publicly available via the git repository at https://github.com/krishauser/Klampt/. The command 

git clone https://github.com/krishauser / Klampt  

will download the required files. 

You will also need to obtain the following dependencies, which may already be installed on your machine: 

¶ CMake (version >= 2.6) 

¶ GLUT  

¶ GLPK, the GNU Linear Programming Kit  

¶ Python, if you wish to use the Python bindings (tested only on Python 2.6 & 2.7).  

¶ Boost C++ Libraries 

¶ (recommended) Assimp, if you wish to load STL, DAE and other geometry file formats.  (Only OBJ and OFF 

are natively supported in Klampt.) 

¶ (recommended) Qt4, if you wish to use nicer GUIs for the core applications. 

¶ (recommended) PyOpenGL is required for visualization (https://pypi.python.org/pypi/PyOpenGL/3.0.2). 

Qt4 and PyQt are optional for scripted resource editing. Python Imaging Library (PIL) is required for saving 

screenshots to disk. 

2.1. LINUX-LIKE ENVIRONMENTS 

Building dependencies. First, the dependencies must be downloaded and built. GLUT and GLPK must first be 

installed in your library paths. Change into the Klampt/ Library  folder and unpack KrisLibrary, TinyXML, GLUI, and 

h59 ǳǎƛƴƎ ǘƘŜ ŎƻƳƳŀƴŘ Ψmake unpack - deps ô. After configuring the dependencies as described below, they 

can be built using the command Ψmake deps ô.  

To configure the dependencies, consider the following notes: 

¶ KrisLibrary may need to be configured for your particular system. Try running cmake- gui  and changing 

the Advanced variables. 

¶ By default, we compile ODE in double floating-point precision.  The reason for this is that on some Linux 

systems, ODE becomes unstable in single floating-point precision and may crash with assertion failures. 

This may be changed on other systems, if you wish, by toggling ODEDOUBLE=0 or 1 in 

Klampt/ Library/ Makefile. Note: if you have already built ODE and then later change its precision, you 

must do a clean build of ODE as well as the CMake cache. 

Enabling Assimp support (optional). To load a larger variety of 3D meshes, Klamp't can be configured to use the 

Asset Importer (Assimp) library. Once Assimp 3.0.1270 is installed on your system (if Klampt/Library / assimp--

3.0.1270-sdk or /usr/lib/libassimp.so  exists), KrisLibrary and Klampt should automatically detect it when built.  

Run /aŀƪŜ ǘƻ ōǳƛƭŘ YƭŀƳǇΩǘ aŀƪŜŦƛƭŜs. wǳƴ άcmake . έ ǘƻ ōǳƛƭŘ ǘƘŜ YƭŀƳǇΩǘ ƳŀƪŜŦƛƭŜǎΦ 

Building static library and apps. ¢ƘŜ ǎǘŀǘƛŎ ƭƛōǊŀǊȅ ƛǎ ōǳƛƭǘ ǳǎƛƴƎ Ψmake Klamptô. The main apps to build are 

RobotTest, SimTest, and RobotPose. ¢ȅǇƛƴƎ Ψmake [target] Ω ǿƛƭƭ build the target. 

https://github.com/krishauser/Klampt/
https://pypi.python.org/pypi/PyOpenGL/3.0.2
http://assimp.sourceforge.net/


Building Python bindings. Once the YƭŀƳǇΩǘ static library is built, the Python bindings in Klampt/Python / klampt 

can be built ǳǎƛƴƎ άmake python έΦ ¢ƻ ƛƴǎǘŀƭƭ ǘƘŜ klampt  module ƛƴǘƻ ȅƻǳǊ tȅǘƘƻƴ ǇŀŎƪŀƎŜΣ ǘȅǇŜ άmake 

python - install έ.  

IMPORTANT: You must set up Python to be able to find the shared library files for external dependencies. 

Otherwise, you will get errors importing the _robotsim  module when calling import klampt . To do this, you may 

either: 

1. Set the LD_LIBRARY_PATH environment variable to include the locations of the TinyXML, ODE, and 

(optionally) Assimp shared libraries.  These will be .so (or DLL) files. 

2. OR move the shared library files into your shared library path 

3. OR on Linux-like systems, edit /etc/ld.so.conf as appropriate and then run ldconfig (as sudo). 

Platform-specific install scripts 

These commands work from a clean install of Ubuntu 12.04  

sudo apt - get freeglut3 freeglut3 - dev glpk python - opengl  

ώhǇǘƛƻƴŀƭΥ ǘƻ ŜƴŀōƭŜ !ǎǎƛƳǇ ƳŜǎƘ ƛƳǇƻǊǘƛƴƎΣ ōŜŦƻǊŜ ŎŀƭƭƛƴƎ ŀƴȅ ƻŦ ǘƘŜ άƳŀƪŜέ Ŏŀlls, call 

sudo apt - get install libassimp - dev ] 
cd Klampt  

cd Library  

make unpack - deps  

make deps  

cd ..  

cmake .  

make all  

sudo make python - install  

 

Building documentation. ¢ƻ ōǳƛƭŘ ǘƘŜ YƭŀƳǇΩǘ /ҌҌ !tL ŘƻŎǳƳŜƴǘŀǘƛƻƴ ǳǎƛƴƎ 5ƻȄȅƎŜƴΣ ǘȅǇŜ Ψmake docs ȭ in 

Klampt/Φ Ψmake python - docsΩ ǿƛƭƭ ōǳƛƭŘ ǘƘŜ tȅǘƘƻƴ !tL ŘƻŎǳƳŜƴǘŀǘƛƻƴΦ 

2.2. WINDOWS 

Prebuilt binary executables and static libraries for VS2015 ŀǊŜ ŀǾŀƛƭŀōƭŜ ƻƴ ǘƘŜ YƭŀƳǇΩǘ ǿŜōǎƛǘŜΦ YƭŀƳǇΩǘ Ŏŀƴ also 

be built from source with Visual Studio 2012 (or Visual Studio 2010 SP1) and above.  

Step by step instructions to install the C++ applications from binaries  

From http://klampt.orgΣ ŘƻǿƴƭƻŀŘ ŀƴŘ Ǌǳƴ ǘƘŜ ²ƛƴон YƭŀƳǇΩǘ ƛƴǎǘŀƭƭŜǊΦ  bƻǘŜΥ LŦ ȅƻǳ Ǉƭŀƴ ǘƻ ŘŜǾŜƭƻǇ ƛƴ ǘƘŜ YƭŀƳǇΩǘ 

C++ API, make sure to get the appropriate installer for your Visual Studio version. 

Step by step instructions to install the Python API from binaries  

1. Visit https://github.com/krishauser/Klampt ŀƴŘ ŎƭƛŎƪ ά/ƭƻƴŜ ƻƴ 5ŜǎƪǘƻǇέΦ Cƻllow the on-screen 

ƛƴǎǘǊǳŎǘƛƻƴǎ ǘƻ ŎƭƻƴŜ ǘƘŜ YƭŀƳǇΩǘ Dƛǘ ǊŜǇƻǎƛǘƻǊȅ. 

2. Install Python 2.7.x from http://www.python.org/getit/ . Make sure to get the Win32 version even if you 

have a 64-bit machine. 

http://klampt.org/
https://github.com/krishauser/Klampt
http://www.python.org/getit/


3. Add C:\ Python27 to your PATH environment variable. (Right click My Computer -> Properties -> 

Advanced System Settings -Ҕ 9ƴǾƛǊƻƴƳŜƴǘ ±ŀǊƛŀōƭŜǎ ŀƴŘ ŀǇǇŜƴŘ Ψ;C: \ Python27 Ω ǘƻ ǘƘŜ t!¢I ǾŀǊƛŀōƭŜΦύ 

4. Install PyOpenGL from https://pypi.python.org/pypi/PyOpenGL/3.0.2 using the Win32 installer. 

5. Install the glut32.dll file from http://user.xmission.com/~nate/glut.html into your SysWOW64 directory 

(if your machine is 64-bit, most newer machines) or System32 directory (for older 32-bit machines). 

6. From http://klampt.org, download and install the Win32 Klamp't Python 2.7 bindings. 

7. Done. As a test, rǳƴ ΨŎƳŘΩ ŦǊƻƳ ǘƘŜ ǎǘŀǊǘ ƳŜƴǳΣ ŎƘŀƴƎŜ ŘƛǊŜŎǘƻǊƛŜǎ ǘƻ Klampt/Python/demos , and run 

python gltemplate.py ../../data/athlete_fractal_1.xml . 

To build your own C++ ŀǇǇƭƛŎŀǘƛƻƴǎ ǘƘŀǘ ƭƛƴƪ ǘƻ YƭŀƳǇΩǘ 

1. Follow the instructions to install the C++ applications from binaries. 

2. Clone the KrisLibrary Git repository from https://github.com/krishauser/KrisLibrary to the 

Klampt/Library  folder as the target location. 

3. From http://klampt.orgΣ ŘƻǿƴƭƻŀŘ ǘƘŜ ŀǇǇǊƻǇǊƛŀǘŜ ²ƛƴон YƭŀƳǇΩǘ ŘŜǇŜƴŘŜƴŎƛŜǎ ŦƻǊ ȅƻǳǊ ±ƛǎǳŀƭ {ǘǳŘƛƻ 

version (both Release and Debug are recommended). Unpack into Klampt/Library . 

4. In your own CMake project, set KLAMPT_ROOT and BOOST_ROOT to the appropriate paths and put the 

following lines into your CMakeLists.txt (along with whatever other lines are needed to build your project) 
SET (CMAKE_MODULE_PATH "${KLAMPT_ROOT}/CMakeModules")  
FIND_PACKAGE(Klampt  REQUIRED)  
ADD_DEFINITIONS(${KLAMPT_DEFINITIONS})  
INCLUDE_DIRECTORIES(${KLAMPT_INCLUDE_DIRS})  
TARGET_LINK_LIBRARIES(MyApp ${KLAMPT_LIBRARIES})  

5. Build your project in standard CMake fashion. 

6. [Note: you may need to set the cmake variable BOOST_ROOT to reflect your Boost installation path using 

ǘƘŜ ŎƻƳƳŀƴŘ ƭƛƴŜ ƻǇǘƛƻƴ ά-5.hh{¢ψwhh¢ҐκǇŀǘƘκǘƻκōƻƻǎǘέ ƻǊ Ǿƛŀ ŀŘŘƛƴƎ .hh{¢ψwhh¢ ƛƴ ŎƳŀƪŜ-gui.] 

.ǳƛƭŘƛƴƎ YƭŀƳǇΩǘ from source. !ŦǘŜǊ ŦƻƭƭƻǿƛƴƎ ǘƘŜ ƛƴǎǘǊǳŎǘƛƻƴǎ ǳƴŘŜǊ ǘƘŜ ƘŜŀŘƛƴƎ άTo build your own C++ 

applications that linƪ ǘƻ YƭŀƳǇΩǘέΣ ǘƘŜ standard CMake procedure should generate appropriate Visual Studio 

project files.  

Building Python bindings from source. (tested with Python 2.7, Win32) The standard CMake procedure should 

generate Visual Studio project files for the ǇǊƻƧŜŎǘ άǇȅǘƘƻƴ-ƛƴǎǘŀƭƭέ but these are broken. Instead, download the 

Windows Python setup.py file from http://klampt.org and copy it to the Klampt/Python  directory.  Edit the paths 

at the top of the file to reflect your coƳǇǳǘŜǊΩǎ ŦƛƭŜ ǎǘǊǳŎǘǳǊŜΦ  Cƛƴŀƭƭȅ, open a Visual Studio Command Prompt in 

Administrative Mode, and depending on your VS version, run: 

VS 2008: 

python setup.py install  

VS 2010: 

set VS90COMNTOOLS=%VS100COMNTOOLS%  

python setup.py install  

VS 2012: 

set VS90COMNTOOLS=%VS110COMNTOOLS%  

python setup.py install  

https://pypi.python.org/pypi/PyOpenGL/3.0.2
http://user.xmission.com/~nate/glut.html
http://klampt.org/
http://www.iu.edu/~motion/software/Klampt-0.5.win32-py2.7.exe
https://github.com/krishauser/KrisLibrary
http://klampt.org/
http://klampt.org/


VS 2015: 

set VS90COMNTOOLS=%VS140COMNTOOLS%  

python setup.py install  

Building dependencies from source. If you wish to build dependencies from scratch, Visual Studio project files are 

available. Make sure to place all compiled library (.lib) files in the Klampt/Library  folder.  All libraries should be 

built in Win32 mode, with C++ code generation set to Multithreaded DLL / Multithreaded Debug DLL. 

Note: when building KrisLibrary you may need to set the cmake variable BOOST_ROOT to reflect your Boost 

ƛƴǎǘŀƭƭŀǘƛƻƴ ǇŀǘƘ ǳǎƛƴƎ ǘƘŜ ŎƻƳƳŀƴŘ ƭƛƴŜ ƻǇǘƛƻƴ ά-5.hh{¢ψwhh¢ҐκǇŀǘƘκǘƻκōƻƻǎǘέ ƻǊ Ǿƛŀ ŀŘŘƛƴƎ .hh{¢ψwhh¢ ƛƴ 

cmake-gui.  

The general procedure is as follows: 

1. Acquire Boost, GLUT and optionally (but recommended) WinGLPK 4.61 and/or Assimp 3.0.1270. Place the 

glut32.lib, glew32.lib, glpk_4_61.lib files in Klampt/Library  or in your Visual Studio path. Place the 

Assimp folder in Klampt/Library . 

2. Configure and edit dependencies as follows: 

1. GLUI:  Visual Studio will complain about template instantiations inside class definitions in glui.h; 

simply put these in the global namespace.  Also, if you are using GLUI rather than Qt4, due to 

±ƛǎǳŀƭ {ǘǳŘƛƻΩǎ ǎǘǊƛƴƎ ǊŀƴƎŜ ŎƘŜŎƪƛƴƎΣ D[¦L ǿƛƭƭ ǘƘǊƻǿ ŀƴ ŀǎsertion in Debug mode when an 

EditText is created.  To fix this, you will have to add several checks similar to this: 

if(text.empty()) return 0;  in glui_edittext.cpp. 

2. ODE: Set up build files with premake4 vs2010. 

3. Compile all dependencies except for KrisLibrary. Place all generated .lib files into the Klampt/Library  

directory.  

1. ODE: compile in double precision, Static. 

2. GLUI: compile as usual. 

3. TinyXML: compile with STL support. 

4. Compile KrisLibrary last. CMake files are available for compiling KrisLibrary with/without Assimp support 

and with/without GLPK support. You may need to do some editing of the BOOST directories using CMake-

GUI depending on how you built Boost. 

5. After compiling, all of the .dll files associated with dependency libraries should be placed in the 

ŀǇǇǊƻǇǊƛŀǘŜ YƭŀƳǇΩǘ ōƛƴŀǊȅ ŦƻƭŘŜǊǎΦ 

 

  



3. RUNNING Y[!atΩ¢ APPS 

RobotTest helps inspect/debug robot files and is run from the command line as follows: 

./RobotTest robot_file  

SimTest performs physics / control simulation and is run from the command line as follows: 

 
(a) 

 
(b) 

Figure 1. The RobotTest GUI  ((a) Qt version, (b) GLUI version). 

./RobotTest data/ robots/ athlete.rob  



./SimTest [world, robot, environment, or object files]  

(e.g., ./SimTest data/robots/athlete.rob data/terrains/plane.env or ./SimTest data/hubo_plane.xml) 

 

RobotPose helps a human designer create configurations, constraints, and motions, and is run similarly to SimTest. 

 
(a) 

 
(b) 

Figure 2. The SimTest GUI, (a) Qt version, (b) GLUI version. The transparent 

ȅŜƭƭƻǿ Ǌƻōƻǘ ƛǎ ǘƘŜ άǇƻǎŜǊέΦ /ƻƴǘŀŎǘ ŦƻǊŎŜǎ ŀǊŜ ŘǊŀǿƴ ƛƴ ƻǊŀƴƎŜΦ 

./ SimTest data / tx90cups .xml  



 

3.1. INTERACTING WITH 3D WORLDS 

Each of the above apps follows a common camera navigation and robot posing interface. 

Navigating 

 
(a) 

 
(b) 

Figure 3. The RobotPose GUI ((a) Qt version, (b) GLUI version). The 3D 

ŎƻƻǊŘƛƴŀǘŜ ŦǊŀƳŜǎ ŀǊŜ άǿƛŘƎŜǘǎέ ŦƻǊ ǇƻǎƛƴƎ ƭƛƴƪǎ ƻŦ the robot in Cartesian space. 

./ RobotPose data /hubo_plane.xml  



¶ Dragging with the left mouse button (left-drag) rotates the camera about a focal point. 

¶ Alt+left-drag zooms the camera. 

¶ Ctrl+left-drag pans the camera. 

¶ Shift+left-drag moves the camera toward and away from the focal point. 

Posing robots 

¶ Right-clicking on a robot link and dragging up and down will set its desired joint value. 

¶ The floating base of a robot is posed by right-dragging on the widget. 

¶ IK posing 

o To switch to IK-ǇƻǎƛƴƎ ƳƻŘŜΣ ŎƘŜŎƪ ǘƘŜ άtƻǎŜ ōȅ LYέ ōǳǘǘƻƴΦ  

o In this mode, clicking on a point on the robot will add a new IK point constraint.  

o The widget can be right-dragged to move the robot around.  

o Typing ΨŎΩ ǿƘƛƭŜ ƘƻǾŜǊƛƴƎ ƻǾŜǊ ŀ ƭƛƴƪ ǿƛƭƭ ŀŘŘ ŀ ƴŜǿ ŦƛȄŜŘ Ǉƻǎƛǘƛƻƴ ŀƴŘ Ǌƻǘŀǘƛƻƴ ŎƻƴǎǘǊŀƛƴǘΦ 

o Typing ΨŘΩ ŘŜƭŜǘŜǎ ŀƴ LY ŎƻƴǎǘǊŀƛƴǘΦ 

RobotTest commands  

¶ ΨƘΩ ǇǊƛƴǘǎ ǘƘŜ Ŧǳƭƭ ƘŜƭǇΦ 

¶ ΨǇΩ ǇǊƛƴǘǎ ǘƘŜ ǇƻǎŜŘ configuration to the console. 

SimTest commands (GLUI version) 

¶ Command line options 

o ðconfig [.config file]  loads a robot start configuration from disk. If more than one robot 

exist in the world file, multiple ðconfig  options may be specified to give their start 

configurations. 

o ðmilestones [. milestone  file]  loads a milestone path from disk. 

o ðpath [ .xml or .path file]  loads a MultiPath or piecewise linear trajectory from disk. 

¶ ΨƘΩ ǇǊƛƴǘǎ ǘƘŜ Ŧǳƭƭ ƘŜƭǇΦ 

¶ ¢ȅǇƛƴƎ Ψ Ψ όǎǇŀŎŜ ōŀǊύ ƻǊ ŎƭƛŎƪƛƴƎ ǘƘŜ άDƻ ¢ƻέ όvǘύ or ά{Ŝǘ aƛƭŜǎǘƻƴŜέ (GLUI) button will send the posed 

configuration to the controller. 

¶ ¢ȅǇƛƴƎ ΨǎΩ ƻǊ ŎƭƛŎƪƛƴƎ ǘƘŜ green arrow (Qt) or ά{ƛƳǳƭŀǘŜέ (GLUI) button toggles the simulation. 

¶ ¢ȅǇƛƴƎ ΨŀΩ ŀŘǾŀƴŎŜǎ ōȅ ƻƴŜ ǎƛƳǳƭŀǘƛƻƴ ǎǘŜǇ όмκмлл ǎύΦ 

¶ Clicking the red circle (Qt) or the ά{ŀǾŜ ƳƻǾƛŜέ button (GLUI) will tell the simulator to start saving 640x480 

frames to PPM files on disk at 30fps. These can be converted into a simulation-time (i.e., 1s of movie time 

= 1s of simulated time) movie using a utility such as ffmpeg.  In Qt, the movie-making command and 

ƻǳǘǇǳǘ ŦƛƭŜ Ŏŀƴ ōŜ ŜŘƛǘŜŘ ōȅ ǎŜƭŜŎǘƛƴƎ ά/ƘŀƴƎŜ 9ƴŎƻŘŜǊΧέ ŀƴŘ ά/ƘŀƴƎŜ ŦƛƭŜΧέ ŦǊƻƳ ǘƘŜ άwŜŎƻǊŘέ ƳŜƴǳΣ 

ǊŜǎǇŜŎǘƛǾŜƭȅΦ  ¢ƘŜ ǊŜǎƻƭǳǘƛƻƴ Ŏŀƴ ŀƭǎƻ ōŜ ǎŜǘ ŦǊƻƳ ǘƘŜ άwŜŎƻǊŘέ ƳŜƴǳΦ Lƴ D[¦LΣ ǘƘŜ ƳƻǾƛŜ-making 

command must be executed manually, and the movie resolution can be changed by setting the 

movieWidth  and movieHeight  parameters in simtest.settings (JSON format). 

¶ /ƭƛŎƪƛƴƎ ǘƘŜ ǊŜŘ ǎǇǊƛƴƎ ƛŎƻƴ όvǘύ ƻǊ ǘȅǇƛƴƎ ΨŦΩ όD[¦Lύ toggles force application mode. In force application 

mode, right-clicking and dragging on the robot will apply a spring-like force between the robot and the 

cursor position. 

¶ ¢ƘŜ ά{ŀǾŜ ±ƛŜǿέ όvǘύ ƻǊ ǘyping lowercase ΨǾΩ όGLUI) saves the current viewport to disk, and ά[ƻŀŘ ±ƛŜǿέ 

(Qt) or typing uppercase Ψ±Ω όGLUI) loads the previously saved viewport. This is useful for creating side-by-

side comparison videos. 



Note: when simulating a path, YƭŀƳǇΩǘ will ƻƴƭȅ ƛǎǎǳŜ ŀ άŘƛǎŎƻƴǘƛƴǳƻǳǎ ƧǳƳǇ ǊŜǉǳŜǎǘŜŘέ ǿŀǊƴƛƴƎ if the path does 

ƴƻǘ ǎǘŀǊǘ ŦǊƻƳ ǘƘŜ ǊƻōƻǘΩǎ ŎǳǊǊŜƴǘ ŎƻƴŦƛƎǳǊŀǘƛƻƴΦ LŦ ȅƻǳ ǿƛǎƘ ǘƻ ƛƴƛǘƛŀƭƛȊŜ ǘƘŜ Ǌƻōƻǘ ǿƛǘƘ ǘƘŜ ǎǘŀǊǘ ƻŦ ǘƘŜ ǇŀǘƘΣ ŜƛǘƘŜǊ 

copy the start configuration into the world file, or provide the ïconfig [file]  command line argument. To 

easily extraŎǘ ŀ ǎǘŀǊǘ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ŦǊƻƳ ŀ aǳƭǘƛtŀǘƘ ŦƛƭŜΣ ǳǎŜ ǘƘŜ ǎŎǊƛǇǘ άpython Python/multipath.py ïs 

[path.xml] > temp.config έ. 

RobotPose commands 

¶ Command line options 

o ðl [resource_library directory or XML file]  loads a resource library from disk. Multiple 

libraries can be loaded in this way. 

¶ Individual resources or resource libraries may be loaded / saved from disk via the ά[ƻŀŘ ώ·ϐέ κ ά{ŀǾŜ ώ·ϐέ 

buttons at the top. 

¶ Qt Version: 

o Resources in the resource tree can be expanded, dragged, and copied (Shift+drag) using the 

mouse. 

o The status indicators in the resource tree are as follows: 

Á * indicates that the resource has been modified since loading. 

Á @ indicates that sub-resources have been modified, and RobotPose has not yet merged 

the modifications into the top-level resource.  (Click on the top-level resource to 

attempt the merge) 

Á ! indicates that a prior merge was unsuccessful. For example, a Linear Path may not 

have the same number of times as configurations. Correct the error and try again. 

o ¢ƘŜ ά!ŘŘ wŜǎƻǳǊŎŜΧέ dropdown allows creating new resources. 

o ¢ƘŜ ά/ƻƴǾŜǊǘ ǘƻΧέ ŘǊƻǇŘƻǿƴ ŀƭƭƻǿǎ ǊŜǎƻǳǊŎŜǎ ǘƻ ōŜ ŎƻƴǾŜǊǘŜŘ ǘƻ ǎƛƳƛƭŀǊ ǘȅǇŜǎΦ 

o ά¢ƻ ǇƻǎŜǊέ ǎŜƴŘǎ ǘƘŜ ŎǳǊǊŜƴǘƭȅ ǎŜƭŜŎǘŜŘ ǊŜǎƻǳǊŎŜ ǘƻ ǘƘŜ ǇƻǎŜǊΦ ²ƻǊƪǎ ǿƛǘƘ ά/ƻƴŦƛƎέΣ άLYDƻŀƭέΣ 

άIƻƭŘέΣ ŀƴŘ ά{ǘŀƴŎŜέΦ 

o άCǊƻƳ ǇƻǎŜǊέ ƻǾŜǊǿǊƛǘes the currently selected resource using its value in the poser. Works with 

ά/ƻƴŦƛƎέΣ άLYDƻŀƭέΣ άIƻƭŘέΣ ŀƴŘ ά{ǘŀƴŎŜέΦ 

o ²ƘŜƴ /ƻƴŦƛƎǎΣ [ƛƴŜŀǊ tŀǘƘΣ ƻǊ aǳƭǘƛtŀǘƘ ǊŜǎƻǳǊŎŜǎ ŀǊŜ ǎŜƭŜŎǘŜŘΥ άhǇǘƛƳƛȊŜ tŀǘƘέ ƎŜƴŜǊŀǘŜǎ ŀƴŘ 

optimizes a trajectory along the currently selected resource, minimizing execution time under 

ǘƘŜ ǊƻōƻǘΩǎ ǾŜƭƻŎƛǘȅ ŀƴŘ ŀŎŎŜƭŜǊŀǘƛƻƴ ōƻǳƴŘǎΦ  

¶ GLUI Version: 

o άLibrary -> Poserέ sets the poser to use the currently selected configuration, stance, hold, or 

grasp from the resource library. 

o άPoser -> Libraryέ stores the current posed configuration, stance, or hold to the resource library. 

{ŜƭŜŎǘƛƻƴ ƛǎ ŀŎŎƻƳǇƭƛǎƘŜŘ Ǿƛŀ ǘƘŜ άwŜǎƻǳǊŎŜ ¢ȅǇŜέ ǎŜƭŜŎǘƻǊΦ 

o ά[ƛōǊŀǊȅ /ƻƴǾŜǊǘέ ŎƻƴǾŜǊǘǎ ǘƘŜ ŎǳǊǊŜƴǘƭȅ ǎŜƭŜŎǘŜŘ ǊŜǎƻǳǊŎŜ ƛƴǘƻ ŀ ǊŜǎƻǳǊŎŜ ƻŦ ǘƘŜ ǎǇŜŎƛŦƛŜŘ ǘȅǇŜ ƛƴ 

ǘƘŜ άwŜǎƻǳǊŎŜ ¢ȅǇŜέ ǎŜƭŜŎǘƻǊΦ 

o ά/ǊŜŀǘŜ tŀǘƘέ ƎŜƴŜǊŀǘŜǎ ŀƴ ƛƴǘŜǊǇƻƭŀǘƛƴƎ ǇŀǘƘ and saves it to the resource library. If the currently 

selected resource ƛǎ ŀ /ƻƴŦƛƎ ǘȅǇŜΣ ƛǘ ƛƴǘŜǊǇƻƭŀǘŜǎ ŦǊƻƳ ǘƘŜ ǇƻǎŜǊΩǎ ŎǳǊǊŜƴǘ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ǘƻ ǘƘŜ 

resource. If a Configs resource is selected, then it interpolates amongst the configurations in the 

file. 

o άhǇǘƛƳƛȊŜ tŀǘƘέ ƎŜƴŜǊŀǘŜǎ ŀƴŘ ƻǇǘƛƳƛȊŜǎ ŀ ǘǊŀƧŜŎǘƻǊȅ ŀƭƻƴƎ ǘƘŜ ŎǳǊǊŜƴǘƭȅ ǎŜƭŜŎǘŜŘ ǊŜǎƻǳǊŎŜΣ 

ƳƛƴƛƳƛȊƛƴƎ ŜȄŜŎǳǘƛƻƴ ǘƛƳŜ ǳƴŘŜǊ ǘƘŜ ǊƻōƻǘΩǎ ǾŜƭƻŎƛǘȅ ŀƴŘ ŀŎŎŜƭŜǊŀǘƛƻƴ ōƻǳƴŘǎΦ This works when 

Configs, Linear Path, or MultiPath resources are selected. 



o Note: path editing is not particularly sophisticated due to the limitations of GLUI. The best way of 

generating a sophisticated path inside RobotPose is to generate keyframes into a Configs 

resource, ŀƴŘ ŎƘƻƻǎŜ ά/ǊŜŀǘŜ tŀǘƘέ ƻǊ άhǇǘƛƳƛȊŜ tŀǘƘέΦ 

3.2. EXAMPLE FILES 

World files for different robots and problem setups are available in the Klampt/data  subdirectory: 

¶ hubo*.xml: the KAIST Hubo humanoid. 

¶ puma*.xml: the Puma 760 industrial robot. 

¶ tx90*.xml: the Staubli TX90L industrial robot. 

¶ baxter*.xml: the Rethink Robotics Baxter robot. 

Other test robots, objects, and environments are available in the Klampt/data / {robots,objects,terrains} 

subdirectories. Some files of interest may include: 

¶ athlete.rob: the NASA ATHLETE hexapod (incomplete, missing wheel geometry). 

¶ atlas.rob: the Boston Dynamics ATLAS robot. 

¶ cartpole.rob: a cart-pole balancing control problem. 

¶ footed_2d_biped.robΥ ŀ ǎƛƳǇƭŜ н5 ōƛǇŜŘ ƳƛƳƛŎƪƛƴƎ ŀ ƘǳƳŀƴΩǎ ŦƻǊǿŀǊŘ ƳƻǘƛƻƴΦ 

¶ footed_2d_monoped.rob: a simple 2D monoped. 

¶ hrp2.rob: the AIST HRP-2 humanoid 

¶ pr2.rob: the Willow Garage PR2 robot (requires KrisLibrary to be built with Assimp support) 

¶ robonaut2.rob: the NASA Robonaut2 humanoid torso. 

¶ robotiQ_3finger.rob: the RobotiQ 3-finger Adaptive Gripper. 

¶ simple_2d_biped.robΥ ŀ ǎƛƳǇƭŜ н5 ōƛǇŜŘ ƳƛƳƛŎƪƛƴƎ ŀ ƘǳƳŀƴΩǎ ƭŀǘŜǊŀƭ ƳƻǘƛƻƴΦ 

¶ swingup.rob: a simple pendulum swingup control problem. 

¶ plane.env: a flat plane environment 

¶ block.obj: a 40cm block 

¶ block_small.obj: an 8cm block 

Test motions are available in the Klampt/ data/motions  directory. Simulation examples can be run via: 

¶ ./SimTest data/robots/athlete.rob data/terrains/plane.env ςconfig data/motions/athlete_start.config ς

path data/motions/athlete_flex.xml 

¶ ./SimTest data/hubo_table.xml ςpath data/motions/hubo_table_path_opt.xml 

¶ ./SimTest data/hubo_stair_rail.xml ςpath data/motions/hubo_stair_rail_traj.xml 

3.3. OTHER Y[!atΩ¢ APPS 

YƭŀƳǇΩǘ also comes with the following utility apps: 

¶ URDFtoRob ǇǊƻŘǳŎŜǎ ŀ YƭŀƳǇΩǘ ΦǊƻō ŦƛƭŜ ŦǊƻƳ ŀ ¦ƴƛŦƛŜŘ wƻōƻǘ 5ŜǎŎǊƛǇǘƛƻƴ CƻǊƳŀǘ ό¦w5Cύ ŦƛƭŜΦ Settings for 

geometry import/export can be changed by editing urdftorob.settings.  

 

YƭŀƳǇΩǘ-specific parameters (e.g., ignored self collisions, servo gains) are given default values. To change 

these parameters, the .rob file must be edited or the <klampt>  element may be edited as described in 



Section 5.13.  

 

To clean up extraneous self-collision checks, the Print Self Collisions button of the RobotPose program 

can be used. The MotorCalibrate program may be run to fix up the servo gain and friction parameters.  

 

¶ MotorCalibrate generates motor simulation parameters given example commanded and sensed 

trajectories.  It runs a quasi-Newton optimization with random restarts to match the simulated values to 

the sensed parameters as closely as follows. 

 

To use it, first run it without arguments to generate a blank motorcalibrate.settings file. Edit the 

parameters to set the robot, driver indices to estimate, whether any links are rigidly fixed in space, and 

the commanded / sensed path files (in Linear Path format).  Then run it again with the settings file as 

input, and it will output the optimized parameters to the console.  These latter lines (beginning with 

servoP) should be copied into the .rob or .urdf file. 

 

An example optimization is given by running 

./MotorCalibrate Examples/motorcalibrate_baxter.settings . 

Multiple runs of this process, possibly with different initial conditions, should generate better matches to 

the sensed data. 

 

¶ Unpack expands a composite resource into a hierarchical directory structure containing its components.  

These components can be individually edited and then re-combined into the resource using Pack. 

 

¶ Pack is the reverse of Unpack, taking a hierarchical directory structure and combining it into a composite 

resource of the appropriate type. 

 

¶ Merge combines multiple robot and object files into a single robot file. 

 

¶ SimUtil is a command line interface to the simulator. 

YƭŀƳǇΩǘ ŀƭǎƻ Ŏƻƴǘŀƛƴǎ several example applications in Klampt/Examples: 

¶ Cartpole demonstrates generation of optimal control tables for two toy dynamic systems ς a pendulum 

swing-up and a cart-pole balancing task. 

¶ PlanDemo is a command line kinematic motion planner for collision-free motion between configurations. 

¶ ContactPlan is a command line kinematic motion planner for collision-free, stable motion in contact 

between configurations. 

¶ RealTimePlanning demonstrates real-time planning between randomly generated target configurations. 

¶ UserTrials ƛǎ ŀ ŘŜƳƻƴǎǘǊŀǘƛƻƴ ƻŦ YƭŀƳǇǘΩǎ ǊŜŀƭ-time planning capabilities. A similar program was used for 

the user studies in E. You and K. Hauser. Assisted Teleoperation Strategies for Aggressively Controlling a 

Robot Arm with 2D Input. In proceedings of Robotics: Science and Systems (RSS), Los Angeles, USA, June 

2011.  

  



4. DESIGN PHILOSOPHY 

The main philosophy behind the YƭŀƳǇΩǘ design is to decouple Modeling, Planning, Control, and Simulation 

modules. This division provides a clear logical structure for developing large software systems for operating 

complex intelligent robots. 

¶ Modeling refers to the underlying knowledge representation available to the robot, e.g., limb lengths, 

physical parameters, environment, and other objects in its vicinity. The Modeling module contains 

methods for representing this knowledge. It also includes the ubiquitous mathematical models, such as 

kinematics and dynamics, trajectory representations (e.g., splines), and contact mechanics that required 

for planning and control. 

¶ Planning refers to the computation of paths, trajectories, feedback control strategies, configurations, or 

contact points for a robot. Planning may be performed either offline or online. 

¶ Control refers to the high-rate processing of sensor information into low-level robot controls (e.g., motor 

commands). This also includes state estimation. Note that the boundary between planning and control is 

fuzzy, because a fast planner can be used as a controller, or a planner can compute a feedback control 

strategy. 

¶ Simulation refers to a physical simulation of a virtual world that is meant as a stand-in for the real world 

and robot. The simulation module constructs a detailed physical rigid-body simulation and instantiates a 

controller and virtual sensors for a simulated robot. The controller then applies actuator commands that 

apply forces in the simulation. 

¶ Auxiliary modules include Visualization, referring to the display of a simulated or animated robot and its 

environment, User interface, and I/O, referring to the serialization and management of resources. 

Planning, control, and simulation are related by the use of (largely) common models. However, the simulation 

model does not need to be the same as the planner or ŎƻƴǘǊƻƭƭŜǊΩǎ ƳƻŘŜƭΦ For example, ŀƴ ƻōƧŜŎǘΩǎ Ǉƻǎƛǘƛƻƴ Ƴŀȅ 

be imperfectly sensed, or a free-floating robot like a humanoid may not know precisely where its torso lies in 3D 

space. Also, for computational practicality a planner might work on a simplified model of the robot (e.g., ignoring 

the arms during biped walking) while the controller must expand that information into the full robot 

representation. 

YƭŀƳǇΩǘ uses a concept model that is language-independent, which is implemented using language-specific APIs. 

Since its most complete implementation is in C++, the following sections will discuss the concept model and the 

C++ API together. 

C++ API file structure. 

¶ Modeling: Klampt/{ Modeling, Contact}/ , which depends heavily on KrisLibrary/robotics  for basic 

robot kinematics and dynamics, and KrisLibrary/{math3d, geometry, meshing} for 3-D geometry 

¶ Planning: Klampt/ Planning/ , which depends heavily on KrisLibrary/ {planning, optimization }/  

¶ Control: Klampt/ Control/  

¶ Simulation: Klampt/Simulation /  

¶ Visualization: Klampt/View/  

¶ User interface: Klampt/Interface /  

¶ I/O: native I/O is mostly embedded into models. Import/export to XML world files, ROS, and other 

external formats are found in Klampt/IO / . 



Python API file structure. 

¢ƘŜ YƭŀƳǇΩǘ Python API is primarily given in the klampt module found in Klampt/Python .  This module contains 

functionality in its sub-modules for modeling, simulation, planning, and visualization.  Control is handled in a 

separate module. 

¶ Klampt/Python/klampt Υ ǘƘŜ Ƴŀƛƴ YƭŀƳǇΩǘ ƳƻŘǳƭŜ, and includes robot kinematics, dynamics, simulation, 

and geometry representations. Also includes low-level IK solving and motion planning modules. 

¶ Klampt/Python/klampt /math : basic 3D geometry. 

¶ Klampt/Python/klampt /modeling : other modeling, including IK, trajectories, Cartesian interpolation, 

and sub-Ǌƻōƻǘ ƛƴŘŜȄƛƴƎΦ {ŜǘǘƛƴƎ ŀƴŘ ƎŜǘǘƛƴƎ άŎƻƴŦƛƎǳǊŀǘƛƻƴǎέ ŦƻǊ Ƴŀƴȅ ƻōƧŜŎǘǎΦ 

¶ Klampt/Python/klampt /p lan: motion planning for robots. 

¶ Klampt/Python/klampt /sim : more advanced simulation functionality, such as logging and custom 

actuator and sensor emulation. 

¶ Klampt/Python/klampt /ioΥ ¦ƴƛŦƛŜŘ Lκh ŦƻǊ ŀƭƭ ǘȅǇŜǎ ƻŦ YƭŀƳǇΩǘ ƻōƧŜŎǘǎΦ {ǳǇǇƻǊǘǎ W{hb ŦƻǊƳŀǘǎ ŦƻǊ some 

objects as well. Resource loading, saving, and visual editing. 

¶ Klampt/Python/klampt /vis : Visualization. 

¶ Klampt/Python/ control : custom control modules. 

¶ Klampt/Python/demos : demonstrations about how to use various aspects of the Python klampt API. 

¶ Klampt/Python/exercises : ŜȄŜǊŎƛǎŜǎ ŦƻǊ ƛƳǇƭŜƳŜƴǘƛƴƎ ōŀǎƛŎ ŎƻƴŎŜǇǘǎ ƛƴ YƭŀƳǇΩǘΦ 

¶ Klampt/Python/utils : utility programs. 

5. MODELING 

5.1. MATH 

YƭŀƳǇΩǘ assumes basic familiarity with 3D geometry and linear algebra concepts. It heavily uses structures that 

representing vectors, matrices, 3D points, 3D rotations, and 3D transformations. These routines are heavily tested 

and fast. 

C++ API. Users should become familiar with the definitions in the following files: 

¶ KrisLibrary/math / math.h contains definitions for basic mathematical routines.  Real  ƛǎ ǘȅǇŜŘŜŦΩŜŘ ǘƻ 

double  and (probably) should not be changed. 

¶ KrisLibrary/math / vector.h contains a Vector  Ŏƭŀǎǎ όǘȅǇŜŘŜŦΩŜŘ ǘƻ VectorTemplate<Real> ). 

¶ KrisLibrary/math / matrix .h contains a Matrix  Ŏƭŀǎǎ όǘȅǇŜŘŜŦΩŜŘ ǘƻ MatrixTemplate<Real> ). 

¶ KrisLibrary/math / angle.h contains functions for interpolating and measuring distances of angles on 

SO(2). 
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Figure 4. The Math concept model. 



¶ KrisLibrary/math3d/primitives.h  contains 2D and 3D mathematical primitives. The classes Vector2 , 

Vector3 , Matrix2 , Matrix3 , Matrix4 , RigidTransform2D  and RigidTransform  are efficient 

implementations of 2D and 3D vector/matrix operations. 

¶ KrisLibrary/math3d / rotation contains several representations of rigid 3D rotations, including euler 

angles, moments (aka exponential maps), angle-axis form, and quaternions. All representations can be 

transformed into one another. All routines are implemented to be numerically robust. 

The Vector , Vector3 , and RigidTransform  ŎƭŀǎǎŜǎ ŀǊŜ ǘƘŜ Ƴƻǎǘ ǿƛŘŜƭȅ ǳǎŜŘ ƳŀǘƘ ŎƭŀǎǎŜǎ ƛƴ YƭŀƳǇΩǘΦ ±ŜŎǘƻǊǎ 

accept all the basic arithmetic operations as well as dot products, norms, and distances.  Applying a transformation 

(Matrix3 or RigidTransform) to a point (Vector3) is expressed using the * operator. 

Python API. 3D math operations are found in the klampt.math module under the following files. 

¶ vectorops: basic vector operations on lists of numbers. 

¶ so2: routines for handling 2D rotations. 

¶ so3: routines for handling 3D rotations. 

¶ se3: routines for handling 3D rigid transformations 

The use of numpy / scipy is recommended if you are doing any significant linear algebra. More information can be 

found in the Klampt Math Tutorial. 

5.2. 3-D GEOMETRY 

 

YƭŀƳǇΩǘ uses a variety of geometry types to define geometric primitives, triangulated meshes, and point clouds. 

Geometry data, collision geometries. YƭŀƳǇΩǘ ǎǳǇǇƻǊǘǎ ŀ ǾŀǊƛŜǘȅ ƻŦ Ǝeometry data including primitives, triangle 

meshes, and point clouds. It also experimentally supports implicit surfaces defined on a voxel grid, but the 

implementation is highly incomplete at the moment. This data is stored in ŀƴ ƻōƧŜŎǘΩs local frame.  

Figure 5. The 3D geometry concept model. 
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The notion of a collision geometry combines some underlying geometric data with transformations and collision 

acceleration structures. Collision geometries have a current transformation that sets where they exist in space, and 

is used for collision testing. Collision geometries also support an additional, nonnegative margin  setting that 

άŜȄǇŀƴŘǎέ ǘƘŜ ǳƴŘŜǊƭȅƛƴƎ ƎŜƻƳŜǘǊȅ ǿƘŜƴ ǇŜǊŦƻǊƳƛƴƎ Ŏƻƭƭƛǎƛƻƴ ǘŜǎǘƛƴƎΦ  ¢ƘŜ margin does not actually affect the 

geometric data, but rather it changes the distance threshold that is used to consider colliding vs. noncolliding 

geometries. 

Geometric operation support. Triangle mesh support is complete, optimized, and well-ǘŜǎǘŜŘ ǘƘǊƻǳƎƘƻǳǘ YƭŀƳǇΩǘΣ 

but the other geometries types are not yet fully supported by all modules.  

¶ Drawing: All types supported. 

¶ Collision detection in planning. All types supported. Note: Point cloud collision detection is currently 

inefficient for large point clouds. 

¶ Tolerance verification. All types supported. Note: Point cloud collision detection is currently inefficient for 

large point clouds. 

¶ Distance detection in planning. Not supported at the moment, but primitive/primitive and triangle 

mesh/triangle mesh distance functions are available. 

¶ Ray casting. Triangle meshes, point clouds. 

¶ Contact detection in simulation. Triangle mesh / triangle mesh and triangle mesh / point cloud only. 

File formats. Geometries can be loaded from a variety of file formats.  The native triangle mesh format is Object 

File Format (OFF), which is a simple ASCII file format.  YƭŀƳǇΩǘ ŀƭǎƻ ƴŀǘƛǾŜƭȅ ǎǳǇports OBJ file format.  LŦ YƭŀƳǇΩǘ ƛǎ 

compiled with Assimp support, it can also load a variety of other formats including STL, DAE, VMRL, etc.  Point 

clouds can be loaded from PCD files (v0.7), as specified by the Point Cloud Library (PCL). 

Geometry caching. When multiple ƻōƧŜŎǘǎ ƭƻŀŘ ǘƘŜ ǎŀƳŜ ƎŜƻƳŜǘǊȅ ŦƛƭŜΣ YƭŀƳǇΩǘ ǳǎŜǎ ŀ ŎŀŎƘƛƴƎ ƳŜŎƘŀƴƛǎƳ ǘƻ 

avoid reloading the file from disk and re-creating collision acceleration structures. This is essential for loading very 

large scenes with many replicated objects. However, when geometries are transformed by API calls, they are 

removed from the cache. So, to achieve maximum performance with many duplicated geometries, it is 

recommended to transform the geometry files themselves in advance rather than dynamically through the API. 

C++ API. Geometry data is stored in the AnyGeometry3D  type and collision geometries are stored in the 

AnyCollisionGeometry3D  type. These are essentially container types that abstract the underlying geometry and 

collision acceleration data structures. To operate on the data therein, users will need to ƛƴǎǇŜŎǘ ǘƘŜ ƎŜƻƳŜǘǊȅΩǎ 

type and cast to the appropriate type. Detailed documentation can be found in the following files: 

¶ KrisLibrary/math3d/ geometry3d.h defines 3D geometric primitives, including Point3D , Segment3D , 

Triangle3D , AABB3D, Box3D, Sphere3D , and Ellipsoid3D .  There is also a GeometricPrimitive3D  class 

that abstracts common operations on any geometric primitive. 

¶ KrisLibrary/ meshing/TriMesh.h defines 3D triangle meshes. 

¶ KrisLibrary/ meshing/PointCloud.h defines a 3D point cloud. Each point may contain a variety of other 

named properties, including color, normal, id, etc. 

¶ KrisLibrary/ geometry/CollisionMesh.h contains the CollisionMesh  and CollisionMeshQuery  data 

structures. CollisionMesh  overloads the Meshing::TriMeshWithTopology  class and represents a 

preprocessed triangle mesh for collision detection. It can be rigidly transformed arbitrarily in space for 

making fast collision queries via the CollisionMeshQuery  class and the 

Collide /Distances /WithinDistan ce  functions. Mesh-mesh proximity testing (collision and distance 



computation) are handled by the open source PQP library developed by UNC Chapel Hill. These routines 

are heavily tested and fast. 

¶ KrisLibrary/geometry/ AnyGeometry.h defines the AnyGeometry3D , AnyCollisionGeometry3D , and 

AnyCollisionQuery  classes.  It is recommended to use these classes for geometric operations because 

they are abstract and may be extended to handle more geometry representations in the future. 

Python API. The Geometry3D  class in klampt module allows collision testing between geometries.  All the standard 

YƭŀƳǇΩǘ ƎŜƻƳŜǘǊȅ ǘȅǇŜǎ όƎŜƻƳŜǘǊƛŎ ǇǊƛƳƛǘƛǾŜǎΣ ǘǊƛŀƴƎƭŜ ƳŜǎƘŜǎΣ Ǉƻƛƴǘ ŎƭƻǳŘǎύ ŀǊŜ ǎǳǇǇƻǊǘŜŘΦ tǊƻǘƻǘȅǇŜǎ ŀƴŘ 

documentation are defined in klampt/src/ geometry.h. 

For convenience, the klampt.model.collide module provides utility functions for checking collision with sets of 

objects, as well as a WorldCollider  class that by checks collision between any set of objects and any other set of 

objects. These methods return an iterator over collision pairs, which allows the user to either stop at the first 

collision or enumerate all collisions. The following WorldCollider  methods are used most often: 

¶ collisions() : checks for all collisions. 

¶ collisions(filter) : checks for all collisions between objects for which filter(obj)  returns True  

¶ collisions(filter1,filter2) : checks for all collisions between pairs of objects for which 

filter1(objA)  and filter2(objB)  both return True 

¶ robotSelfCollisions , robotObjectCollisions , robotTerrainCollisio ns , objectObjectCollisions , 

and objectTerrainCollisions  check collisions only between the indicated robots/objects/terrains. 

¶ rayCast(s,d)  performs ray casting against objects in the world and returns the nearest collision found. 

5.3. ROBOTS 

YƭŀƳǇΩǘ ǿƻǊƪǎ ǿƛǘƘ arbitrary tree-structured articulated robots. Robot models provide the following functions 

¶ Describes a list of links with their parents (an open linkage, specified in topologically sorted order) 

¶ Stores kinematic characteristics: link lengths, joint axis types, joint stops, inertial characteristics, and link 

geometry. 

¶ Stores actuation limits 

¶ {ǘƻǊŜǎ ŀ άŎǳǊǊŜƴǘέ Ǌƻōƻǘ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ŀƴŘ ǾŜƭƻŎƛǘȅΦ Note: these should be thought of as temporary 

variables, see notes below. 

¶ Computes and stores ǘƘŜ ǊƻōƻǘΩǎ άŎǳǊǊŜƴǘέ link frames via forward kinematics. 

¶ /ƻƳǇǳǘŜǎ ǘƘŜ ǊƻōƻǘΩǎ [ŀƎǊŀƴƎƛŀƴ ŘȅƴŀƳƛŎǎ ǘŜǊƳǎΦ 

¶ Stores link collision geometries and performs collision detection. 

¶ Stores information about which links can self-collide. 

¶ Names each link and contains semantics of the hoǿ ǘƘŜ ŘŜƎǊŜŜǎ ƻŦ ŦǊŜŜŘƻƳ ƻŦ ǘƘŜ Ǌƻōƻǘ ƳŀǇ ǘƻ άƧƻƛƴǘǎέ 

and actuators. 

¶ Loads and saves robot descriptions from disk. 

File formats. Robots are loaded from YƭŀƳǇΩǘ-specific .rob files or more widely-used URDF files.  These are simple 

text files that are editable by hand. 

Although URDF is more commonly used, there are some convenient aspects of .rob files that may be useful. For 

example, the mount  command allows robot grippers and other attachments to be added automatically at load-

time. 



The basic URDF file formŀǘ ŘƻŜǎ ƴƻǘ ǎǇŜŎƛŦȅ ǎƻƳŜ ŀǎǇŜŎǘǎ ƻŦ YƭŀƳǇΩǘ ǊƻōƻǘǎΦ ¢ƘŜǎŜ Ŏŀƴ be added under the 

<klampt>  XML tag. See the documentation below or the Klampt import robot tutorial for more details. 

For simulation purposes, Klamp't will need some motor parameters to be tweaked (servoP , servoI , servoD , 

dryFriction , viscousFriction ). This can be done by hand by tuning and "exercising" the robot in simulation. An 

automatic solution is given by the MotorCalibrate program, which will optimize the constants to match a dataset 

of sensed and commanded joint angles that you record while exercising the physical robot.  See Section 3.3 for 

more details about this program. 

The URDFtoRob program converts from .urdf to .rob files. Geometric primitive link geometries will be converted 

to triangle meshes. 

 

C++ API. YƭŀƳǇΩǘ ƛǎ ōŀǎŜŘ ƘŜŀǾƛƭȅ ƻƴ ǘƘŜ KrisLibrary/robotics  package for defining articulated robot kinematics 

and dynamics. The Robot  class in Klampt/Modeling /Robot.h has the following class hierarchy: 

Robot  -> RobotWithGeometry  -> RobotDynamics3D  -> RobotKinematics3D  -> Chain  

The reasons for the class hierarchy are largely historical, but meaningful. For example, a protein backbone might 

be modeled as a RobotKinematics3D but not a RobotDynamics3D.  

¶ Chain  stores the topological sorting of the articulation (the parents  member). 
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¶ RobotKinematics3D  stores the kinematic and dynamic information of links, joint limits, the current 

configuration and the current link frames.  It also provides methods for computing forward kinematics, 

jacobians, and the center of mass. 

¶ RobotDynamics3D  stores the actuator limits and the current velocity. It provides methods for computing 

ƛƴŦƻǊƳŀǘƛƻƴ ǊŜƭŀǘŜŘ ǘƻ ǘƘŜ ǊƻōƻǘΩǎ ŘȅƴŀƳƛŎǎΦ 

¶ RobotGeometry3D  stores link collision geometries and information about which links can self collide.  It 

performs self-collision testing and collision testing with other geometries. 

¶ Robot  defines link names and semantics of Joints and Drivers. 

Python API.  The Python RobotModel  class provides flat access to robot models. 

Configurations. A robot configuration is a nonredundant description of the positions of each link of the robot, and 

is essentially an ordered list of numbers described by a Config  object. Each entry in the configuration is a degree 

of freedom (DOF), which is usually movable but is sometimes fixed to a constant value. 

The robot model contains a current configuration. It is important to is not necessarily the current configuration of 

the simulated robot or an actual robot, but is rather a temporary variable ǊŜǇǊŜǎŜƴǘƛƴƎ ǘƘŜ ŎƻƴǘǊƻƭƭŜǊκǇƭŀƴƴŜǊΩǎ 

mental state of where the robot might be posed.  

C++ API. The Config  Ŏƭŀǎǎ ƛǎ ǎƛƳǇƭȅ ǘȅǇŜŘŜŦΩŜŘ ŀǎ ŀ Vector  (see KrisLibrary/math/vector.h ). ¢ƘŜ Ǌƻōƻǘ ƳƻŘŜƭΩǎ 

configuration is described in Robot.q .  To ensure consistency between the configuration and the link frames, the 

Robot.Updat eConfig(q)  method ǎƘƻǳƭŘ ōŜ ŎŀƭƭŜŘ ǘƻ ŎƘŀƴƎŜ ǘƘŜ ǊƻōƻǘΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ. UpdateConfig  performs 

forward kinematics to compute the link frames, while simple assignment of the form Robot.q=q  does not. 

Python API. A Config  object is simply a list of floating point numbers, and ǘƘŜ Ǌƻōƻǘ ƳƻŘŜƭΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ is 

retrieved / set using RobotModel.setConfig(q)/ RobotModel.getConfig() . Upon calling setConfig()  the link 

transforms and geometries are automatically updated using forward kinematics. 

Links. Links represent rigid coordinate frames that are connected to either another link or the world coordinate 

frame. Every degree of freedom of the robot has an associated Link. Links are named and numbered from 0 to 

#DOFs-1. Each link stores ŀƴ ƛƴŘŜȄ ƻŦ ƛǘǎ ǇŀǊŜƴǘΣ ŀƴŘ ǘƘŜ ǇŀǊŜƴǘ ƛƴŘŜȄ Ƴǳǎǘ ōŜ ƭŜǎǎ ǘƘŀƴ ǘƘŜ ƭƛƴƪΩǎ ƛƴŘŜȄ 

(topologically sorted order). A parent of -1 indicates that the link is attached to the world coordinate frame. Each 

link may be prismatic or revolute and moves along or around a link axis given by a 3D vector. Links also contain 

mass parameters, the reference transformation to its parent, and a (possibly empty) collision geometry, which is 

ǎǇŜŎƛŦƛŜŘ ǊŜƭŀǘƛǾŜ ǘƻ ǘƘŜ ƭƛƴƪΩǎ ŎƻƻǊŘƛƴŀǘŜ ǎȅǎǘŜƳΦ ! ƭƛƴƪ ŀƭǎƻ ǎǘƻǊŜǎ ŀ άŎǳǊǊŜƴǘέ ǿƻǊƭŘ transformation which is 

calculated using forward kinematics. 

C++ API. Links are stored in the Robot. links  member, which is an array of RobotLink3D ΩǎΦ ¢ƘŜ ǇŀǊŜƴǘ ƛƴŘŜȄ ƻŦ 

each link is stored in the parents  member, which is a list of int Ωǎ. The link type is stored in RobotLink3D . type  

and its axis is stored in RobotLink3D . w. RobotLink3D  also contains mass parameters (mass, inertia , com), the 

reference transformation to its parent (T0_Parent ύΣ ŀƴŘ ǘƘŜ ƭƛƴƪΩǎ current transformation T_World . 

Link geometries are stored in the Robot.geometry  variable (but to take advantage of the cache the 

Robot.geomManagers  variable should be used for saving/loading/modifying the geometry). The collision geometry 

transform is only updated to the current link transform after robot.UpdateGeometry() is called. 

Python API. References to links are retrieved using the RobotModel.link(index or name)  method. Kinematic 

information can be retrieved via get/setParent() , get/setAxis() , and get/setParentTransform()  (changing 



from revolute to prismatic types is not supported at the moment). The current world transformation is retrieved 

via get/setTransform() .  

! ǊŜŦŜǊŜƴŎŜ ǘƻ ǘƘŜ ƭƛƴƪΩǎ ƎŜƻƳŜǘǊȅ ƛǎ ǊŜǘǊƛŜǾŜŘ Ǿƛŀ ǘƘŜ geometry()  method. Geometry current transforms are 

updated automatically after RobotModel.setConfig(q) . 

Virtual links. To represent free-floating bases, one should use a set of 5 massless virtual links and 1 physical link 

that represent the x, y, and z translations and rotations around the z, y, and x axes (roll-pitch-yaw convention). 

Likewise, a mobile robot may be represented by 2 virtual links + 1 physical link: two for x, y translations connected 

by prismatic joints, and the last for q, connected to its parent by a revolute joint. A ball-and-socket joint may be 

represented by 2 virtual links + 1 physical link. 

C++ API. See RobotKinematics3D.InitializeRigidObject  for an example of how to set up a floating base. 

Python API. See klampt.model.floatingbase.py for utility functions for setting up a floating base. 

Joints. The DOFs of a robot are considered as generic variables that define the extents of the articulations between 

links. At the Robot  level, YƭŀƳǇΩǘ introduces the notion of Joints, which introduce a notion of semantics to groups 

of DOFs. Most Joints will be of the Normal type, which map directly to a single DOF in the normal way. However, 

free-floating bases and other special types of Joints designate groups of DOFs that should be interpreted in special 

ways. These special Joints include: 

¶ Weld  joints, which indicate that a DOF should not move. 

¶ Spin  joints, which are able to rotate freely and infinitely. 

¶ Floating  joints, which translate and rotate freely in 3D (e.g., free-floating bases) 

¶ FloatingPlanar  joints, which translate and rotate freely in 2D (e.g., mobile wheeled bases) 

¶ BallAndSocket  joints, which rotate freely in 3D. 

¶ Closed  joints, which indicate a closed kinematic loop. Note: this is simply a placeholder for potential 

future capabilities; these are not yet handled in YƭŀƳǇΩǘ. 

Drivers. Although many robots are driven by motors that transmit torques directly to single DOFs, the Robot class 

can represent other drive systems that apply forces to multiple DOFs. For example, a cable-driven finger may have 

a single cable actuating three links, a mobile base may only be able to move forward and turn, and a satellite may 

have thrusters. Free-floating bases may have no drive systems whatsoever. 

A robot is set up with a list of Drivers available to produce its torques. Normal  drivers act as one would expect a 

motor that drives a single DOF to behave. Connected transmissions with linear relationships between multiple DOF 

(such as certain cable drives or gear linkages) are supported through the Affine  driver type. The other driver types 

are not fully tested and/or supported, although we hope to add some of this functionality in the future. 

5.4. TERRAINS 

A Terrain   is defined very simply as a Collision Geometry annotated with friction coefficients. They may be loaded 

from .env files or raw geometry files. In the latter case, some default friction value is assigned (set to 0.5). 

C++ API. See Klampt/ Modeling/ Terrain.h. 

Python API. See the TerrainModel  class. 



5.5. RIGID OBJECTS 

A RigidObject  is a collision mesh associated with a RigidTransform  and other dynamic parameters. 

Rigid Objects  may be loaded from .obj files or raw geometry files. In the latter case, the dynamic parameters are 

set to default values (e.g., mass = 1). 

C++ API: See Klampt/ Modeling/RigidObject.h. 

Python API: See the RigidObjectModel  class. 

5.6. WORLDS 

A World stores multiple named robots, terrain, and rigid objects, along with associated visualization information. 

Worlds are loaded from .xml files or created dynamically by loading individual elements. The world essentially 

stores three arrays containing robots, rigid objects, and terrains. 

Entity names. Each entity in the world is named with a string identifier, which is ideally unique. If names are not 

unique, entities must be addressed by index. Furthermore, some modules like klampt.model.coordinate assume 

names are unique; if not, unexpected behavior may result. 

Entity IDs. Each entity in the world, including each robot, robot link, rigid object, and terrain, can be addressed via 

a unique ID number. Note that this is not the same as an ŜƴǘƛǘȅΩǎ ƛƴŘŜȄ into the array containing it; the index is not 

unique when compared across entity types. 

C++ API. See the RobotWorld  class (Klampt/ Modeling/World.h ) 

Python API. See the WorldModel  class. 

5.7. PATHS AND TRAJECTORIES 
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Figure 7. The Path concept models. 



YƭŀƳǇΩǘ distinguishes between paths and trajectories: paths are geometric, time-free curves, while trajectories are 

paths with an explicit time parameterization. Mathematically, paths are expressed as a continuous curve 

ώίȡπȟρᴼὅ while trajectories are expressed as continuous curves ώὸȡὸȟὸ ᴼὅ where ὅ is the 

configuration space and ὸȟὸ are the initial and final times of the trajectory, respectively. 

Classical motion planners compute paths, because time is essentially irrelevant for fully actuated robots in static 

environments. However, a robot must ultimately execute trajectories so a planner must somehow prescribe times 

to paths before executing them. Various methods are available in YƭŀƳǇΩǘ to convert paths into trajectories. 

YƭŀƳǇΩǘ handles two path types. 

¶ Milestone lists. The simplest path type is simply a list of milestones that should be piecewise linearly 

interpolated. These are typically simply given as arrays of Config s. Note: to properly handle ŀ ǊƻōƻǘΩǎ 

rotational joints, milestones should be interpolated via robot-specific interpolation functions. Cartesian 

linear interpolation does not correctly handle floating and spin joints. See the functions in 

Klampt/Modeling /Interpolate.h  (C++) and RobotModel.interpolate ()  (Python) to do so. 

¶ Cubic splines (timed and untimed). YƭŀƳǇΩǘ supports piecewise cubic curves. Routines for smooth spline 

interpolation of configuration lists are found in Klampt/Modeling /SplineInterpolate .h (C++) and 

Hermite spline interpolation in the HermiteTrajectory  class in klampt.model.trajectory. 

YƭŀƳǇΩǘ handles three trajectory types. 

¶ Piecewise linear. These trajectories are given by a list of times and milestones that should be piecewise 

linearly interpolated. These are typically simply given as an array of reals  listing points in time along with 

an array Configs  describing the milestones reached at each of those points. [See note above regarding 

interpolation.] With a historical misnomer, these trajectories are given in the LinearPath  class of 

Klampt/Modeling/ Paths.h (C++). In Python they are given in the Trajectory , SO3Trajectory , 

SE3Trajectory , and RobotTrajectory  classes of klampt.model.trajectory. 

¶ DynamicPath  (piecewise parabolic curves). These are time-optimal bounded-acceleration trajectories that 

include both configuration, velocity, and time. Routines in Klampt/Modeling/Paths.h  or 

Klampt/Modeling /DynamicPath.h are available to quickly compute DynamicPaths  from milestone lists, 

milestone+velocity lists, and milestone+time lists given velocity and acceleration bounds (C++). Currently 

not implemented in Python. 

¶ Time-scaled cubic splines. Found in the TimeScaledBezierCurve  class in 

Klampt/Planning/TimeScaling.h (C++). 

Especially for legged robots, the preferred path type is MultiPath , which allows storing both untimed paths and 

timed trajectories. It can also store multiple path sections with inverse kinematics constraints on each section. 

Conversions between most path types are supported in Klampt/Modeling/ Paths.h (C++) and 

klampt.model.trajectory (Python). 

Multipaths. A MultiPath  is a rich path representation for legged robot motion. They contain one or more path (or 

trajectory) sections along with a set of IK constraints and holds that should be satisfied during each of the sections. 

This information can be used to interpolate between milestones more intelligently, or for controllers to compute 

feedforward torques more intelligently than a raw path. They are loaded and saved to XML files. Details can be 

found in Klampt/Modeling /MultiPath.h  (C++) and klampt.model.multipath (Python).  The 



Klampt/Python/klampt/model/multipath.py  can also be run as a script to perform various simple 

transformations on MultiPaths . 

Each MultiPath  section maintains a list of IK constraints in the ikObjectives  member, and a list of Holds in the 

holds  member. There is also support for storing common holds in the MultiPath Ωǎ holdSet  member, and 

ǊŜŦŜǊŜƴŎƛƴƎ ǘƘŜƳ ǘƘǊƻǳƎƘ ŀ ǎŜŎǘƛƻƴΩǎ holdNames  or holdIndices  lists (keyed via string or integer index, 

respectively). This functionality helps determine which constraints are shared between sections, and also saves a 

bit of storage space. 

MultiPaths  also contain arbitrary application-specific settings, which are stored in a string-keyed dictionary 

member settings . Common settings include: 

¶ robot , which indicates the name of the robot for which the path was generated. 

¶ resolution , which indicates the resolution to which a path has been discretized. If resolution  has not 

been set or is too large for the given application, a program should use IK to interpolate the path. 

¶ program , the name of the procedure used to generate the path. 

¶ command_line , the shell command used to invoke the program that generated the path.  

Sections may also have settings. No common settings have yet been defined for sections. 

5.8. INVERSE KINEMATICS 

Inverse kinematics (IK) constraints ǎǘŀǘŜ ǘƘŀǘ ǎƻƳŜ ǾŀǊƛŀōƭŜǎ ƛƴ ŀ ƭƛƴƪΩǎ ŎƻƻǊŘƛƴŀǘŜ ǎȅǎǘŜƳ should meet fixed values 

relative to the world coordinate system, or fixed values in the coordinate system of any other link.  These can be 

position constraints, orientation constraints, or also linear constraints on either position or orientation. To achieve 

ǎǳŎƘ ŎƻƴǎǘǊŀƛƴǘǎΣ YƭŀƳǇΩǘ Ŏƻƴǘŀƛƴǎ ŀ bŜǿǘƻƴ-Raphson numerical solver for general sets of IK constraints, possibly 

also including joint limits and center-of-mass constraints.   
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Figure 8. The Forward Kinematics and Jacobian subroutines (implemented in a Robot) and the 

IK solver subroutine 



An IKGoal  defines a constraint on a single link. The link  member must be filled out prior to use and indicates the 

ƭƛƴƪΩǎ ƛƴŘŜȄ ƻƴ ƛǘǎ Ǌƻōƻǘ.  If the constraint is meant to constrain the link to a target link on the robot (rather than 

the world), then the destLink  member should be filled out.  By default, destLink  is  -1, indicating that the target is 

in world coordinates. 

Easy setup. For convenience, the SetFromPoints  method (C++) and setFixedPoints  method (Python) are 

provided to map a list of local points to a list of target space points. This function covers most typical IK 

constraints. If there is a single point, the constraint is a fixed point constraint. If the points are collinear, the 

constraint is an edge constraint. If the points span a plane, the constraint is a fixed constraint. 

Detailed setup. Position constraints are defined by the localPosition , endPosition , and optionally the direction 

members. There are four types of position constraint available. 

¶ Free : no constraint 

¶ Planar : the point is constrained in one dimension, i.e., to lie on a plane. Here endPosition  refers to a 

point on the plane and direction  refers to the plane normal. 

¶ Linear : the point is constrained in two dimensions, i.e., to lie on a line. Here endPosition  refers to a 

point on the line and direction  refers to the line direction. 

¶ Fixed : the point is constrained to a fixed point. Here endPosition  refers to that point and direction is 

ignored. 

Rotation constraints are defined by the endRotation  and optionally the localAxis  members. There are three 

types of rotation constraint available. 

¶ Free : no constraint 

¶ Axis : rotation is constrained about an axis. The direction localAxis  maps to the endRotation  direction. 

These must be unit vectors. 

¶ Fixed : rotation is fixed. The endRotation  member is a MomentRotation  that represents the fixed 

orientation. To convert to a 3x3 matrix, call the GetFixedGoalRotation  method (C++) or getRotation  

method (Python) . To convert from a 3x3 matrix, call the SetFixedRotation  method or 

setFixedRotConstraint  method (Python). 

IKGoals are implemented in KrisLibrary/robotics/IK.h  (C++) and the IKObjective wrapper class in 

Klampt/Python/klampt/src/robotik.h  (Python). 

Numerical solvers. Numerical inverse kinematics solvers are extremely flexible and can solve for arbitrary 

combinations of IK constraints. ¢ƘŜȅ ǘŀƪŜ ǘƘŜ ǊƻōƻǘΩǎ ŎǳǊǊŜƴǘ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ŀǎ ŀ ǎǘŀǊǘƛƴƎ Ǉƻƛƴǘ ŀƴŘ Ǌǳƴ ŀ bŜǿǘƻƴ-

Raphson technique to (hopefully) solve all constraints simultaneously. These routines automatically try to optimize 

only over the relevant variables, eΦƎΦΣ ƛŦ ǘƘŜ ƻƴƭȅ ŎƻƴǎǘǊŀƛƴǘ ƛǎ ƻƴ ǘƘŜ ǊƻōƻǘΩǎ ǊƛƎƘǘ ŦƻƻǘΣ ǘƘŜƴ ǘƘŜ ŀǊƳǎΣ ƘŜŀŘΣ ŀƴŘ 

left leg will not be included as optimization variables.  

C++ API. The SolveIK()  functions in KrisLibrary/robotics/IKFunctions.h  are the easiest way to solve IK 

constraints. For richer functionality, consult the documentation of the RobotIKFunction  and RobotIKSolver  

classes and Get * Dofs() functions. 

Python API. Convenient calls to IK solvers are found in the klampt.model.ik module. Functions for global inverse 

kinematics (using random restarts) and local inverse kinematics (limiting the amount of joint angle deviation) 

solving are available. 



Analytical solvers. There are hooks for analytical solvers in KrisLibrary/robotics/AnalyticIK. h but these are not 

used yet in YƭŀƳǇΩt. Future versions may support them. 

5.9. DYNAMICS 

The fundamental Langrangian mechanics equation is 

 ὄήή ὅήȟή Ὃή † ὐή Ὢ (1)  

Where ή is configuration ή is velocity, ήis acceleration, ὄή is the positive semidefinite mass matrix, ὅήȟή is the 

Coriolis force, Ὃή is the generalized gravity, † is the link torque, Ὢ are external forces, and ὐή are the Jacobians 

of the points at which the points are applied. ! ǊƻōƻǘΩǎ Ƴƻǘƛƻƴ ǳƴŘŜǊ ƎƛǾŜƴ ǘƻǊǉǳŜǎ ŀƴŘ ŜȄǘŜǊƴŀƭ ŦƻǊŎŜǎ Ŏŀƴ ōŜ 

computed by multiplying both sides by B-1 and integrating the equation forward in time. 

C++ API. YƭŀƳǇΩǘ has several methods for calculating and manipulating these terms. The first set of methods is 

found in RobotKinematics3D  and RobotDynamics3D . ¢ƘŜǎŜ ǳǎŜ ǘƘŜ άŎƭŀǎǎƛŎέ ƳŜǘƘƻŘ ǘƘŀǘ expands the terms 

mathematically in terms of Jacobians and Jacobian derivatives, and runs in O(n3). The CalcAcceleration  method is 

used to convert the RHS to accelerations (forward dynamics). CalcTorques  is used to convert from accelerations to 

the RHS (inverse dynamics). 

The second set of methods uses the Newton-Euler rigid body equations and the Featherstone algorithm 

(KrisLibrary/robotics/NewtonEuler.h ). These equations are O(n) for sparsely branched chains and are typically 

faster than the classic methods for modestly sized robots (e.g., n>6). Although NewtonEuler  is designed particularly 

for the CalcAccel  and CalcTorques  methods for forward and inverse dynamics, it is also possible to use it to 

calculate the C+G term in O(n) time, and it can calculate the B or B-1
 matrices in O(n2) time. 

Python API. The RobotModel  class can compute each of these items using the Newton-Euler method. 

5.10. CONTACTS 

YƭŀƳǇΩǘ ǎǳǇǇƻǊǘǎ ǎeveral operations for working with contacts. Currently these support legged locomotion more 

conveniently than object manipulation, because the manipulated object must be defined as part of the robot, and 

robot-object contact is considered self-contact. 

C++ API. These routines can be found in KrisLibrary/robotics , in particular Contact.h, Stability.h, and 

TorqueSolver.h. 

¶ A ContactPoint  is either a frictionless or frictional point contact. Consist of a position, normal, and 

coefficient of friction. 

¶ A ContactFormation  defines a set of contacts on multiple links of a robot. Consists of a list of links and a 

list of lists of contacts. For all indices i , contacts[i]  is the set of contacts that affect links[i] .   

Optionally, self-contacts may be defined by providing the list of target links targets[i] , with -1 denoting 

the world coordinate frame. Contact quantities may be given target space or in link-local coordinates is 

application-defined. 

¶ The TestCOMEquilibrium  functions test whether the center of mass of a rigid body can be stably 

supported against gravity by valid contact forces at the given contact list. 



¶ The EquilibriumTester  class provides richer functionality than TestCOMEquilibrium , such as force 

limiting and adding robustness factors. It may also save some memory allocations when testing multiple 

centers of mass with the same contact list. 

¶ The SupportPolygon  class explicitly computes a support polygon for a given contact list, and provides 

even faster testing than EquilibriumTester  for testing large numbers of centers of mass (typically 

around 10-20). 

¶ The TorqueSolver  class solves for equilibrium of an articulated robot under gravity and torque 

constraints. It can handle both statically balanced and dynamically moving robots. 

Python API. These routines can be found in klampt.model.contact which are thin wrappers around the underlying 

C++ functions. 

¶ A ContactPoint  is either a frictionless or frictional point contact. Consist of a position, normal, and 

coefficient of friction.  Unlike in C++, the ContactPoint data structure also contains which objects are in 

contact. 

¶ forceClosure  tests whether a given set of contacts is in force closure. 

¶ comEquilibrium  tests whether the center of mass of a rigid body can be stably supported against gravity 

by valid contact forces at the given contact list. 

¶ supportPolygon  computes a support polygon for a given contact list. Testing the resulting boundaries of 

the support polygon is much faster than calling comEqulibrium  multiple times. 

¶ equilibriumTorques  solves for equilibrium of an articulated robot under gravity and torque constraints. 

It can handle both statically balanced and dynamically moving robots. 

5.11. HOLDS, STANCES, AND GRASPS 

The contact state of a single link, or a related set of links, is modeled with three higher-level concepts. Holds  are a 

set of contacts of a link against the environment and are used for locomotion planning. Stances  are a set of Holds.  

Grasps  are generally used for manipulation planning but could also be part of locomotion as well (grasping a rail 

for stability, for example). 

Holds  are defined as a set of contacts (the contacts  member) and the associated IK constraint (the ikConstraint  

member) that keeps a link on the robot placed at those contacts.  These contacts are considered fixed in the world 

frame. Holds may be saved and loaded from disk. The C++ API defines them in Klampt/ Contact/Hold.h , which also 

defines convenience setup routines in the Setup*  methods. The Python API defines them in 

klampt.model.contact . 

The C++ API also defines a couple additional classes. Stances  (Klampt/Contact/ Stance.h) define all contact 

constraints of a robot. They are defined simply as a map from links to Holds. Grasps  (Klampt/Contact/Grasp.h) 

are more sophisticated than holds and are most appropriate for modeling hands that make contact with fingers. A 

Grasp defines an IK constraint of some link (e.g., a palm) relative to some movable object or the environment, as 

well as the values of related link DOFs (e.g., the fingers) and possibly the contact state. Note: support for planning 

with Grasps is limited in the current version. 

5.12. RESOURCES AND RESOURCE LIBRARIES 

Most of the types mentioned in this section can be saved and loaded from disk conveniently through the YƭŀƳǇΩǘ 

resource management mechanism. When working on a large project, it is recommended that configurations, 



paths, holds, etc. be stored in dedicated sub-project folders to avoid polluting the main YƭŀƳǇΩǘ folder. Resources 

are compatible with the RobotPose app, as well as the C++ and Python APIs. 

Currently supported types include: 

¶ Config  (.config) 

¶ Hold  (.hold) 

¶ Stance  (.stance) 

¶ Grasp  (.xml) 

¶ Configuration lists (.configs) 

¶ TriMesh  (.off, .tri, etc.) 

¶ PointCloud  (.pcd) 

¶ Robot  (.rob) 

¶ RigidObject  (.obj) 

¶ World  (.xml) 

¶ Linear paths (.path) 

¶ MultiPath  (.xml) 

YƭŀƳǇΩǘ ŀƭǎƻ ǎǳǇǇƻǊǘ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŀŘŘƛǘƛƻƴŀƭ ǘȅǇŜǎ ǿƘƛŎƘ Řƻ ƴƻǘ ƘŀǾŜ ŀ ŘŜŘƛŎŀǘŜŘ ŦƛƭŜ ŜȄǘŜƴǎƛƻƴΥ 

¶ Vector3   

¶ Matrix3  

¶ RigidTransform  

¶ Matrix  

¶ IKGoal  

C++ API. The Klampt/Modeling /Resources.h file lists all available resource types. Note that a sub-project folder 

can be loaded all at once through the ResourceLibrary class (KrisLibrary/utils/ResourceLibrary.h ). After 

initializing a ResourceLibrary instance with the MakeRobotResourceLibrary function in 

(Klampt/Modeling /Resources.hύ ǘƻ ƳŀƪŜ ƛǘ YƭŀƳǇΩǘ-aware, the Load All /SaveAll() methods can load an entire 

folder of resources. These resources can be accessed by name or type using the Get * ()  methods. 

Alternatively, resource libraries can be saved to XML files via the Load Xml/SaveXml()  methods. This mechanism 

may be useful in the future, for example to send complex robot data across a network.  

Python API. The klampt.io.resource module allows you to easily load, save, or edit resources. Visual editing is 

supported for Config , Configs , Vector , and RigidTransform  types. See the Python/demos/ resourcetest.py 

demo for more examples about how to use this module. 

5.13. FILE TYPES 

The following standard file types are used in YƭŀƳǇΩǘ: 

¶ World files (.xml) 

¶ Robot files (.rob) 

¶ ¦w5C ŦƛƭŜǎ ǿƛǘƘ YƭŀƳǇΩǘ-specific elements (.urdf) 

¶ Triangle mesh files (.tri) 

¶ Rigid object files (.obj) 



¶ Configuration files (.config) 

¶ Configuration set files (.configs) 

¶ Simple linear path files (.path) 

¶ Multipath files (.xml) 

¶ Hold files (.hold) 

¶ Stance files (.stance) 

¶ Grasp files (.xml) 

World (.xml) files 

Structure: an XML v1.0 file, containing robots, rigid objects, and terrains, as well as simulation parameters. Follows 

the following schema. 

¶ world : top level element. 

 
¶ robot : adds a robot to the world. 

 
¶ rigidObject : adds a rigid object to the world. If the file  attribute is not given, then the 

geometry  child must be specified. Note: rotation attributes are applied in sequence. 

 
¶ geometry Υ ǎŜǘǎ ǘƘŜ ƻōƧŜŎǘΩǎ ƎŜƻƳŜǘǊȅΦ 

 

Attributes 

-  background  (Vector4, default light blue): sets the RGBA background color of the world. Each channel has the 

range [0,1]. 

Attributes 

-  name όǎǘǊƛƴƎΣ ƻǇǘƛƻƴŀƭΣ ŘŜŦŀǳƭǘ άwƻōƻǘέύΥ ŀ ǎǘǊƛƴƎ ǘƻ ōŜ ǳǎŜŘ ŀǎ ŀƴ ƛŘŜƴǘƛŦƛŜǊΦ 

-  file  (string): the Robot (.rob) file to be loaded. May be relative or absolute path. 

-  config (Config , optional): an initial configuration. Format: N q1 é qN where N is the number of 

DOF in the robot. 

Attributes 

-  file  (string, optional): the Rigid object (.obj) file to be loaded. May be relative or absolute path. 

-  position  (Vector3 , optional, default (0,0,0)): the position of the object center  

-  rotateRPY  (Vector3 , optional): rotates the object about the given roll-pitch-yaw entries. 

-  rotateX  (Real , optional): rotates the object about the x axis. 

-  rotateY (Real , optional): rotates the object about the y axis. 

-  rotateZ (Real , optional): rotates the object about the z axis. 

-  rotateMoment  (Vector3 , optional): rotates the object with a rotation matrix derived from the given 

exponential map representation. 

Attributes 

-  mesh όǎǘǊƛƴƎύΥ ǘƘŜ ƎŜƻƳŜǘǊȅ ŦƛƭŜ όΦǘǊƛΣ ΦǇŎŘύΦ  όbƻǘŜΥ άƳŜǎƘέ ƛǎ ŀ ƳƛǎƴƻƳŜǊΣ ƛƴ ǘƘŜ ŦǳǘǳǊŜ ƛǘ 

should work with any type of geometry file) 

-  scale  (Real  or Vector3 , optional): a scale factor for the mesh.  If 3 elements are given, 

then this scales the mesh separately along each axis. 

-  translate (Vector3 , optional): a translation for the mesh. 

-  margin (Real , optional, default 0): the collision boundary layer width. 



-  phys ics : sets the physics parameters of the object. 

 
¶ terrain : adds a terrain to the world. 

 
¶ display (optional): configures the OpenGL display of the terrain. 

 
¶ simulation   (optional): configures the simulation model. 

¶ globals  (optional): global ODE simulation parameters. 

 
¶ terrain  (optional): terrain configuration. 

 
¶ geometry : sets up the geometry and constitutive parameters

 

Attributes 

-  mass (RealΣ ƻǇǘƛƻƴŀƭΣ ŘŜŦŀǳƭǘ мύΥ ǘƘŜ ƻōƧŜŎǘΩǎ ƳŀǎǎΦ 

-  com (Vector3 Σ ƻǇǘƛƻƴŀƭΣ ŘŜŦŀǳƭǘ όлΣлΣлύύΥ ǘƘŜ ƻōƧŜŎǘΩǎ ŎŜƴǘŜǊ ƻŦ ƳŀǎǎΣ ǊŜƭŀǘƛǾŜ ǘƻ ǘƘŜ ƻǊƛƎƛƴ 

of its coordinate frame. 

-  inertia (Matrix3 , optiƻƴŀƭΣ ŘŜŦŀǳƭǘ лύΥ ǘƘŜ ƻōƧŜŎǘΩǎ ƛƴŜǊǘƛŀ ƳŀǘǊƛȄΦ 

-  automass  όǾŀƭǳŜ άлέ ƻǊ άмέΣ ƻǇǘƛƻƴŀƭύΥ ǘƘŜ ƻōƧŜŎǘΩǎ /ha ŀƴŘ ƛƴŜǊǘƛŀ ƳŀǘǊƛȄ ǿƛƭƭ ōŜ ǎŜǘ 

automatically from the geometry. 

-  kRestitution, kFriction, kStiffness, kDamping  (Real s, optional, defaults 0.5, 0.5, 

inf, inf): set the constitutive parameters of the object. 

Attributes 

-  file  (string): the geometry (.tri or .pcd) file to be loaded. May be relative or absolute path 

-  scale, margin : see world/rigidObject/geometry/scale, margin . 

-  translation, position : see world/rigidObject/position . 

-  rotate* : see world/rigidObject/rotate* . 

-  kFriction : see world/rigidObject/physics/kFriction . 

Attributes 

-  color  (Vector3  or Vector4 , optional, default light brown): sets the RGB or RGBA color of 

the terrain. 

-  texture  όǎǘǊƛƴƎΣ ƻǇǘƛƻƴŀƭύΥ ǎŜǘǎ ŀ ǘŜȄǘǳǊŜΦ  /ŀƴ ōŜ άƴƻƛǎŜέΣ άŎƘŜŎƪŜǊέΣ άƎǊŀŘƛŜƴǘέΣ ŀƴŘ 

άŎƻƭƻǊƎǊŀŘƛŜƴǘέ ŀǘ ǘƘŜ ƳƻƳŜƴǘΦ 

Attributes 

-  gravity  (Vector3 , optional, default (0,0,-9.8)): sets the gravity vector 
-  CFM 
-  EFP 
-  maxContacts  (int, optional, default 20): sets a maximum number of contacts per body-

body contact. 

-  boundaryLayer  (bool, optional, default 1): activates boundary layer collision detection. 

-  rigidObjectCollisions (bool, optional, default 1): activates object to object collision 

detection. 

-  robotSelfCollisions (bool, optional, default 0): activates robot self-collision detection. 

-  robotRobotCollisions (bool, optional, default 0): activates robot to robot collision 

detection. 

Attributes 

-  index  (int): the terrain index. 

Attributes 

-  padding  (Real , optional, default 0 for terrains, 0.0025 for everything else): sets 

the boundary layer thickness. 

-  kRestitution, kFriction, kStiffness, kDamping : see 
world/rigidObject/physics/k*  



¶ object (optional): rigid object configuration

 
¶ geometry : see world/simulation/env/geometry . 

¶ robot  (optional): robot configuration

 
¶ geometry : see world/simulation/env/geometry . 

¶ controller : ŎƻƴŦƛƎǳǊŜǎ ǘƘŜ ǊƻōƻǘΩǎ ŎƻƴǘǊƻƭƭŜǊΦ 9ŀŎƘ ŎƻƴǘǊƻƭƭŜǊ ǘȅǇŜ Ƙŀǎ ŀ 

certain set of optional attributes that can be set here. 

 

¶ sensor s : ŎƻƴŦƛƎǳǊŜǎ ǘƘŜ ǊƻōƻǘΩǎ ǎŜƴǎƻǊǎ. 

¶ Children: Any of the sensor types listed in Section 8.2. 

¶ state : resumes the simulator from some other initial state. 

 

Robot (.rob) files 

Structure: a series of lines, separated by newlines.  Comments start with #, may appear anywhere on a line, and 

comments continue until the end of the line.  Lines can be continued to the next line using the backslash \ .  

A robot has N links, and D drivers.  Elements of each line are whitespace-separated. Indices are zero-based.  inf  

indicates infinity.  Some items are optional, indicated by default values.  

 Kinematic items: 

-  links LinkName[0] é LinkName[N- 1] : link names, names with spaces can be enclosed in quotes. 

-  parents parent[0] é parent[N- 1] : link parent indices.  -м ƛƴŘƛŎŀǘŜǎ ŀ ƭƛƴƪΩǎ ǇŀǊŜƴǘ ƛǎ ǘƘŜ ǿƻǊƭŘ ŦǊŀƳŜΦ 

-  jointtype v[0] é v[N - 1] : DOF motion type, can be r  for revolute or p for prismatic. 

-  tparent T[0] é T[N- 1] : relative rigid transforms between each link and its parent.  Each T[i] is a list of 

column vectors of the rotation matrix, followed by the translation (12 values for each T). 

-  { alpha, a, d, theta } v[0] é v[N- 1] : Denavit-Hartenberg parameters. Either tparent or D-H parameters 

must be specified.  alphadeg is equivalent to alpha and thetadeg is equivalent to theta, but in degrees. 

-  axis a[0] é a[N- 1] : DOF axes, in the local frame of the link (3 values for each a).  Default: z axis (0,0,1). 

-  qmin v[0] é v[N- 1] : configuration lower limits, in radians.  qmindeg  is equivalent, but in degrees. Default: -

inf. 

-  qmax v[0] é v[N- 1] : configuration upper limits, in radians. qmaxdeg  is equivalent, but in degrees. Default: 

inf. 

-  q v[0] é v[N- 1] : initial configuration values, in radians. qdeg  is equivalent, but in degrees. Default: 0. 

Attributes 

-  index  (int): the rigid object index. 

Attributes 

-  index  (int): the robot index. 

-  body  (int, optional, default -1): the link index. -1 applies the settings to the entire robot. 

Attributes 

-  type  (string): the controller type. See Section 8.3 for more details. 

-  rate  (Real, optional, default 100Hz): rate at which the controller runs, in Hz. 

-  timeStep  (Real, optional, default 0.01): 1/rate. 

Attributes 

-  data  (string): Base64 encoded data from a prior WorldSimulator.WriteState call. Other 

than simulation state, the world file must be otherwise identical to the one that 

produced this data. 



-  translation : a shift of link 0. Default: (0, 0, 0). 

-  r otation : a rotation of link 0, given by columns of a 3x3 rotation matrix.  Default: identity. 

-  scale : scales the entire robot model. 

-  mount link fn [ optional transform T] : mounts the sub-robot file in fn  as a child of link link .  If T is 

provided, this is the relative transform of the sub-robot given by columns of a 3x3 rotation matrix followed by 

the translation (12 values in T). 

Dynamic Items: 

-  mass v[0] é v[N- 1] : link masses. 

-  automass : set the link centers of mass and inertia matrices automatically from the link geometry. 

-  com v[0] é v[N- 1] : link centers of mass, given in local (x,y,z) coordinates (3 values for each v).  May be 

omitted if automass  is included. 

-  inertiadiag v[0] é v[N- 1] :  link inertia matrix diagonals (Ixx, Iyy, Izz), assuming off-diagonal elements are 

all zero (3 values for each v).  May be omitted if inertia  or automass  is included. 

-  inertia v[0] Χ Ǿώb-1]: link 3x3 inertia matrices (9 items for each v).  May be omitted if inertia diag  or 

automass  is included. 

-  velmin  v[0] é v[N- 1] : configuration velocity lower limits, in radians. velm in deg  is equivalent, but in 

degrees. Default: -inf. 

-  velmax v[0] é v[N- 1] : configuration velocity upper limits, in radians. velmaxdeg  is equivalent, but in 

degrees. Default: inf. 

-  accmax v[0] é v[N- 1] : configuration acceleration absolute value limits, in radians. acc maxdeg is equivalent, 

but in degrees. Default: inf. 

-  torque max v [0] é v[N- 1] : DOF torque absolute value limits, in Nm (revolute) or N (prismatic). Default: inf. 

-  powermax v[0] é v[N- 1] : DOF power (torque*velocity) absolute value limits. Default: inf. 

-  autotorque : set the torquemax values according to an approximation: acceleration maxima * masses * radii of 

descendent links. 

-   

Geometric items: 

-  geometry fn[0] é fn[N- 1] : geometry files for each link. File names can be either absolute paths or relative 

paths. Files with spaces can be enclosed in quotes.  Empty geometries can be specified using òó. 

-  geomscale v[0] é v[N- 1] : scales the link geometry.  Default: no scaling. 

-  geomtransform index m11 m12 m13 m14 m21 m22 m23 m24 m31 m32 m33 m34 m41 m42 m43 m44 : transforms 

the link geometry with a 4x4 transformation matrix m with entries given in row-major order.   

-  geommargin v[0] é v[N- 1] : sets the collision geometry to have this virtual margin around each geometric 

mesh.  Default: 0. 

-  noselfcollision i[0] j[0] é i[k] j[k]: turn off self-collisions between the indicated link pairs.  Each 

ƛǘŜƳ Ƴŀȅ ōŜ ŀ ƭƛƴƪ ƛƴŘŜȄ ƛƴ ǘƘŜ ǊŀƴƎŜ лΣΧΣb-1 or a link name. 

-  selfcollision i[0] j[0] é i[k] j[k]: turn on self-collisions between the indicated link pairs.  Each item 

Ƴŀȅ ōŜ ŀ ƭƛƴƪ ƛƴŘŜȄ ƛƴ ǘƘŜ ǊŀƴƎŜ лΣΧΣb-1 or a link name.  Default: all self-collisions enabled, except for link vs 

parent. 

Joint items: 



-  joint type index [optional baseindex] : indicates how a group of link DOFs associated with link index  

should be interpreted.  If baseindex  is specified, this indicates that the joint operates on a group of DOFs 

ranging from baseindex  to index .  type  indicates the type of joint, and can be normal  (1DOF interval), spin  

(1DOF wrapping around from 0 to 2pi), weld  (0DOF), floating  (6DOF with 3 translational 1 rotational, 

baseindex  must be specified), floatingplanar  (3DOF with 2 translational 1 rotational, baseindex must be 

specified), ballandsocket  (3DOF rotational, baseindex must be specified). 

Driver items: 

-  driver type [params] : TODO: describe driver types normal, affine, translation, rotation. 

-  servoP : driver position gains. 

-  servoI : driver integral gains. 

-  servoD : driver derivative gains. 

-  dryFriction : driver dry friction coefficients. 

-  viscousFriction : driver viscous friction coefficients. 

Properties: 

-  property sensors [file or XML string] Υ ŘŜŦƛƴŜǎ ǘƘŜ ǊƻōƻǘΩǎ ǎŜƴǎƻǊǎ ŜƛǘƘŜǊ ƛƴ ŀƴ ·a[ ŦƛƭŜ ƻǊ ǎǘǊƛƴƎΦ {ŜŜ the 

World XML format above or Section 8.2 for more details on the XML format of this element. 

-  property controller  [file or XML string] Υ ŘŜŦƛƴŜǎ ǘƘŜ ǊƻōƻǘΩǎ ŎƻƴǘǊƻƭƭŜǊ ŜƛǘƘŜǊ ƛƴ ŀƴ ·a[ ŦƛƭŜ ƻǊ ǎǘǊƛƴƎΦ 

See the World XML format above or Section 8.3 for more details on the XML format of this element. 

URDF files (.urdf) ǿƛǘƘ YƭŀƳǇΩǘ-specific elements 

URDF (Unified Robot Description Format) is a widely used XML-based robot format found in ROS and other 

ǇŀŎƪŀƎŜǎΦ YƭŀƳǇΩǘ Ƙŀǎ ŀƭǿŀȅǎ ōŜŜƴ ŀōƭŜ ǘƻ ŎƻƴǾŜǊǘ ¦w5C ŦƛƭŜǎ ǘƻ ΦǊƻō ŦƛƭŜǎΣ ǿƘƛŎƘ Ŏŀƴ ōŜ ŜŘƛǘŜŘ ǘƻ ƛƴǘǊƻŘǳŎŜ 

YƭŀƳǇΩǘ-specific attributes, like motor simulation parameters and ignoring certain self-collision pairs.  Starting in 

ǾŜǊǎƛƻƴ лΦсΣ YƭŀƳǇΩǘ Ŏŀƴ ƴƻǿ ǊŜŀŘ ǘƘƻǎŜ ŀǘǘǊƛōǳǘŜǎ ŦǊƻƳ ¦w5C ŦƛƭŜǎ ǿƛǘƘ ŀƴ ŜȄǘǊŀ <klampt>  XML element.  The 

schema for defining this element is as follows: 

¶ robot : top level element. Follows URDF format as usual. 

¶ klampt Υ ǎǇŜŎƛŦƛŜǎ YƭŀƳǇΩǘ-specific parameters

 

Attributes 

-  use_vis_geom  (bool, optional, default false): use visualization geometry in imported model. 

-  flip_yz  (bool, optional, default true): flip the Y-Z axes of imported link geometries. 

-  package_root (stringΣ ƻǇǘƛƻƴŀƭΣ ŘŜŦŀǳƭǘ άΦέύΥ ŘŜǎŎǊƛōŜ ǘƘŜ ǇŀǘƘ ƻŦ ǘƘŜ ǇŀŎƪŀƎŜ ŘŜǎŎǊƛōŜŘ ƛƴ 

ŀƴȅ άǇŀŎƪŀƎŜΥκκέ ¦wL ǎǘǊƛƴƎǎΣ ǊŜƭŀǘƛǾŜ ǘƻ ǘƘŜ ¦w5C ŦƛƭŜΦ 

-  world_frame  όǎǘǊƛƴƎΣ ƻǇǘƛƻƴŀƭΣ ŘŜŦŀǳƭǘ άǿƻǊƭŘέύ: the name of the fixed world frame. 

-  freeze_root _link  (bool, optional, default false): if true, the root link is frozen in space 

(useful for debugging) 

-  default_mass  (float, optional, default 1e-8): default mass assigned to links not given mass 

parameters. 

-  default_inertia (float, Vector3, or Matrix3, optional, default 1e-8): default inertia matrix 

assigned to links not given mass parameters. 



¶ link : describes link parameters. 

 
¶ noselfcollision : turns off self collisions.

 
¶ selfcollision : turns on certain self collisions.  Note: if this item is present, default self 

collisions are not used.  Same attributes as noselfcollisions. 

¶ sensors:  specifies sensors to be attached to the robot. See the World XML format 

above or Section 8.2 for more details on the XML format of this element. 

  

Attributes 

-  name (string): identifies the link. 

-  physical (bool, optional, default true): if set to 0, this is a virtual link with no mass. 

-  accMax  (float, optional, default inf): sets the acceleration maximum for this link. 

-  servoP, servoI, servoD  (float, optional, defaults 10, 0, 1): sets the PID gains of 

this joint (note: must be a normally driven link). 

-  dryFriction, viscousFriction (float, optional, default 0): sets the friction 

constants for this joint. 

Attributes 

-  pairs (string, optional): identifies one or more pairs of links for which self-collision 

should be turned off.  Whitespace-separated. Each item can be an index or a link name. 

-  group1,group2  (string, optional): if group1 and group2 are specified, collisions between 

all of the links in group 1 (a whitespace separated list of link indices or names) will be 

turned off.  Either pairs  or both group1  and group2  must be present in the element. 



6. SIMULATION 

Simulation functionality ƛƴ YƭŀƳǇΩǘ is built on top of the Open Dynamics Engine (ODE) rigid body simulation 

package, but adds emulators for robot sensors and actuators, and features a robust contact handling mechanism. 

When designing new robots and scenarios, it is important to understand a few details about how YƭŀƳǇΩǘ works in 

order to achieve realistic simulations. 

Boundary-layer contact detection. Other rigid body simulators tend to suffer from significant collision handling 

artifacts during mesh-ƳŜǎƘ ŎƻƭƭƛǎƛƻƴΥ ƻōƧŜŎǘǎ ǿƛƭƭ ƧƛǘǘŜǊ ǊŀǇƛŘƭȅΣ ƛƴǘŜǊǇŜƴŜǘǊŀǘŜΣ ƻǊ ǊŜŀŎǘ ǘƻ άǇƘŀƴǘƻƳέ ŎƻƭƭƛǎƛƻƴǎΦ 

The primary cause is that contact points, normals, and penetration depths are estimated incorrectly or 

inconsistently from step-to-step. YƭŀƳǇΩǘ uses a new boundary layer contact detection procedure that leads to 

accurate and consistent estimation of contact regions. Moreover, the boundary layer can simulate some limited 

compliance in the contact interface, such as soft rubber coatings or soft ground.  

In YƭŀƳǇΩǘ, contact is detected along the boundary layers rather than the underlying mesh. The thickness of the 

boundary layer is a simulation parameter called padding. Padding for each body can be set via the padding  

attribute in the <simulation>{<robot>,<object>,<terrain>}<geometry>  XML element, with all bodies padded 

with 2.5mm by default. This allows it to handle thin-shell meshes as illustrated in the following figure. 

 

  



The first step of YƭŀƳǇΩǘΩǎ Ŏƻƭƭƛǎƛƻƴ ƘŀƴŘƭƛƴƎ ǊƻǳǘƛƴŜ ƛǎ ǘƻ ŎƻƳǇǳǘŜ ŀƭƭ ŎƻƴǘŀŎǘǎ ōŜǘǿŜŜƴ ŀƭƭ ǇŀƛǊǎ ƻŦ geometric 

primitives within the padding range. This is somewhat slow when fine meshes are in contact. In order to reduce 

the number of contacts that must be handled by ODE, KlampΩǘ then performs a clustering step to reduce the 

number of contacts to a manageable number. The maximum number of contacts between two pairs of bodies is 

given by the maxContacts global parameter, which can be set as an attribute in the XML <simulation>  tag. 

For more details, please see: K. Hauser. Robust Contact Generation for Robot Simulation with Unstructured 

Meshes. In proceedings of International Symposium of Robotics Research, 2013. 

Collision response. In addition to padding, each body also has coefficients of restitution, friction, stiffness, and 

damping (kRestitution , kFriction , kStiffness , and kDamping  attributes in 

<simulation>{<robot>,<object>,<terrain>}<geometry>  XML elements). The stiffness and damping coefficients 

can be set to non-infinite values to simulate softness in the boundary layer. When two bodies come into contact, 

their coefficients are blended using arithmetic mean for kRestitution, and harmonic means for kFriction, kStiffness, 

and kDamping.  

The blending mechanism is convenient because only one set of parameters needs to be set for each body, rather 

than each pair of bodies, and is a reasonable approximation of most material types. Currently there is no 

functionality to specify custom properties between pairs of bodies. 

Actuator simulation. YƭŀƳǇΩǘ handles actuators in one of two modes: PID control and torque control modes. It also 

simulates dry friction (stiction) and viscous friction (velocity-dependent friction) in joints using the dryFriction  

and viscousFriction  parameters in .rob files. Actuator commands are converted to torques (if in PID mode), 

capped to torque limits, and then applied directly to the links. ODE then handles the friction terms.  

In PID mode, the torque applied by the actuator is † Ὧ — — Ὧ — — ὯὍ where Ὧ, Ὧ, and Ὧ  

are the PID constants, —  and —  are the desired position and velocity, — and — are the actual position and 

velocity, and Ὅ is an integral error term. 

The friction forces resist the motion of the joint, and YƭŀƳǇΩǘ uses a simple stick-slip friction model where the 

sticking mode breaking force is equal to ‘  and the sliding mode friction force is ίὫὲ— ‘ ‘ — . Note: 

passive damping should be handled via the friction terms. 

Like all simulators, YƭŀƳǇΩǘ does not perfectly simulate all of the physical phenomena affecting real robots. Some 

common phenomena include: 

¶ Backlash in the gears.  

¶ Back EMF. 

¶ Angle-dependent torques in cable drives.  

¶ Motor-induced inertial effects, which are significant particularly for highly geared motors. Can be 

approximated by adding a new motor link connected by an affine driver to its respective link. 

¶ Velocity-dependent torque limits (e.g. power limits). Can be approximated in a controller by editing the 

ǊƻōƻǘΩǎ ŘǊƛǾŜǊ ǘƻǊǉǳŜ ƭƛƳƛǘǎ ŘŜǇŜƴŘƛƴƎ ƻƴ ǾŜƭƻŎƛǘȅΦ /ŀƴ ōŜ ŎƻǊǊŜŎǘƭȅ ƛƳǇƭŜƳŜƴǘŜŘ ōȅ ŀŘŘƛƴƎ ŀ 

WorldSimulationHook  or editing the Controlled RobotSimu lator  class. 

¶ Motor overheating. Can be implemented manually by simulating heat production/dissipation as a 

differential equation dependent on actuator torques. May be implemented in a WorldSimulationHook . 

  



7. PLANNING 

Motion planning is the problem of connecting two configurations with a feasible kinematic path or dynamic 

ǘǊŀƧŜŎǘƻǊȅ ǳƴŘŜǊ ŎŜǊǘŀƛƴ ŎƻƴǎǘǊŀƛƴǘǎΦ ¢ƘŜ ƻǳǘǇǳǘ Ƴŀȅ ŀƭǎƻ ōŜ ǊŜǉǳƛǊŜŘ ǘƻ ǎŀǘƛǎŦȅ ǎƻƳŜ ƻǇǘƛƳŀƭƛǘȅ ŎǊƛǘŜǊƛŀΦ  YƭŀƳǇΩǘ 

has the ability to plan: 

¶ Collision-free kinematic paths in free space, 

¶ Collision-free, stable kinematic paths on constraint manifolds, 

¶ Minimum-time executions of a fixed trajectory under velocity and acceleration constraint, 

¶ Minimum-time executions of a fixed trajectory under torque and frictional force constraints, 

¶ Replanning under hard real-time constraints. 

A variety of kinematic planning algorithms are supported, including PRM, RRT, RRT*, PRM*, Lazy-RRT*, Lazy-PRM*, 

LBT-RRT, SBL, and PRT. 

There are two levels of planning interface. The robot-level interface is a higher-level interface automatically defines 

notions of sampling, collision checking, etc. (similar to the functionality of MoveIt!) The configuration space 

interface is much lower level and more abstract, and requires the user to define feasibility tests and sampling 

routines (similar to the functionality of OMPL). The lower level approach is more tedious, but provides greater 

power. 

Regardless of which interface you use, the general pipeline is as follows: 

1. Construct a planning problem. Define the configuration space (C-space) and terminal conditions (start 

and goal configurations, or in general, sets) 

2.  Instantiate a planning algorithm. Take care: some algorithms work with some problems and not 

others. 

3. Call the planner. Sampling-based planners are set up for use in any-time fashion: 

a) Plan as long as you want in a while loop, OR 

b) Set up a termination criterion 

Any-time planning means that the likelihood of success increases as more time spent. For optimizing 

planners, the quality of path improves too. 

4.  Retrieve the path (sequence of milestones) 

The resulting paths is then ready for execution or for some postprocessing smoothing. 

7.1. ROBOT-LEVEL KINEMATIC MOTION PLANNING 

High-level kinematic motion planning generates collision-free paths for robots. The most basic form of planning 

considers fixed-base robots in free space (i.e., not in contact with the environment or objects). 

C++ API. Example code is given in Examples/plandemo.cpp (the application can be created via the command 

make PlanDemo ). 

The general way to plan a path connecting configurations qstart  and qgoal  is as follows: 

1. Initialize a WorldPlannerSettings  object for a RobotWorld  with the InitializeDefault  method. 



2. Create a SingleRobotCSpace  (Klampt/Planning/RobotCSpace.h) with the RobotWorld , the index of the robot 

(typically 0), and the initialized WorldPlannerSettings  object. 

3. Then, a MotionPlannerFactory  (KrisLibrary/planning/AnyMotionPlanner .h) should be initialized with your 

desired planning algorithm. ¢ƘŜ άŀƴȅέ ǎŜǘǘƛƴƎ ǿƛƭƭ ŎƘƻƻǎŜ ŀƴ ŀƭƎƻǊƛǘƘƳ ŀǳǘƻƳŀǘƛŎŀƭƭȅΦ 

4. Construct a MotionPlanningInterface*  with the MotionPlannerFactory.Create()  method. Call 

MotionPlanningInterface.AddConfig(qstart)  and MotionPlanningInterface.AddConfig(qgoal)  

5. Call MotionPlanningInterface.PlanMore(N)  to plan for N iterations, or call PlanMore () until a time limit is 

reached. Terminate when IsConnected(0,1)  returns true, and call GetPath(0,1 ,path )  to retrieve the path. 

6. Delete the MotionPlanningInterface* . 

Example code is as follows. 

#include ñPlanning/RobotCSpace.hò 

#include <planning/AnyMotionPlanner.h>  

 

//TODO: setup world  

WorldPlannerSettings settings;  

settings .InitializeDefault(world);  

//do more constraint setup here if desired, e.g., set edge collision checking resolution  

SingleRobotCSpace cspace(world,0,&settings);  //pla n for robot 0  

MotionPlannerFactory factory;  

factory.type = ñanyò;   //options are ñprmò, ñrrtò, ñsblò, ñprm*ò, etc 

//do more planner setup here if desired, e.g., change perturbation size  

MotionPlanner Interface* planner = factory.Create(&cspace);  

int istart=planner - >AddMilestone (qstart);  //should be 0  

int igoal=planner - >AddMilestone (qgoal);  //should be 1  

int maxIters=1000;  

bool solved=false;  

MilestonePath path;  

for(int i=0;i<maxIters;i++) {  

 planner - >PlanMore();  

 if(planner - >IsConnected(0,1)) {  

  plann er - >GetPath(0,1,path);  

  solved=true;  

  break;  

 }  

}  

delete planner;  

The default settings in WorldPlannerSettings  (Klampt/Planning/PlannerSettings.h) and MotionPlannerFactory  

should be sufficient for basic testing purposes, but many users will want to tune them for better performance. For 

example, distance metric weights and contact tolerances may be tuned. Collision margins can be tuned by editing 

the margins of robot/object/terrain geometries. 

To plan for part of a robot (e.g., the arm of a legged robot), the SingleRobotCSpace2  class can be used instead. Be 

sure to configure the fixedDofs  and fixedValues  members before using it. 

Note: although RobotCSpace.h contains multi-robot planning classes, they are not yet well-tested. Use at your 

own risk. 

Python API. At the highest level, the klampt.robotplanning module offers convenience functions (planToX ) to set 

up plans to generate collision-free plans for a robot to different types of targets. Planning options can be 

configured and extra constraints fed into the planner using these functions. SubRobotModels  are also supported to 

plan for selected parts of a robot. 



For even greater control, you should create an appropriate C-space for your problem and then call a planner 

manually. Several robot-level C-spaces are available for you in klampt.plan.robotcspace.  

¶ RobotCSpace : avoids collisions with other objects in the world. 

¶ ContactCSpace : avoids collisions, maintains IK constraints. 

¶ StanceCSpace : same as ContactCSpace , but also enforces balance under gravity given known points of 

contact. 

The planToX functions generate an instance of a MotionPlan  class, defined in klampt.plan.cspace. For manual 

CSpace creation, you will need to create a MotionPlan instance and set up your C-space and start and goal 

conditions via MotionPlan.setEndpoints . 

The MotionPlan  class supports various options that must be set before construction of the planner. 

¶ setOptions  takes a variety of arguments including: 

o ΨƪƴƴΩΥ ƪ-nearest neighbors parameter. 

o ΨconnectionThresholdΩΥ ƳŀȄƛƳǳƳ ŘƛǎǘŀƴŎŜ ƻǾŜǊ ǿƘƛŎƘ ŀ ŎƻƴƴŜŎǘƛƻƴ ōŜǘǿŜŜƴ ǘǿƻ ŎƻƴŦƛƎǳǊŀǘƛƻƴǎ 

is attempted. 

o ΨperturbationRadiusΩΥ ƳŀȄƛƳǳƳ ŜȄǇŀƴǎƛƻƴ ǊŀŘƛǳǎ ŦƻǊ ww¢ ŀƴŘ {.[Φ 

¶ For a complete description of the accepted options, see the setPlanSetting  documentation in the 

Python/k lampt/src/motionplanning.h  file. 

¶ The constructor selects between different planner types via the type  argument.  Examples may include 

ΨǇǊƳΩΣ ΨǊǊǘΩΣ ΨǎōƭΩΣ ΨǊǊǘϝΩΣ ŜǘŎΦ 

To run the planning algorithm, call MotionPlan.planMore  with the desired number of iterations. Continue calling it 

until MotionPlan.getPathEndpoints  returns non-None.  

To debug or inspect the results of a planner, the, MotionPlan.getRoadmap ()  or MotionPlan.planner.getStats ()  

methods can be used. 

7.2. CONFIGURATION SPACE KINEMATIC MOTION PLANNING 

For even more control, the base C-space interfaces can be overridden with custom behavior. A wide variety of 

systems can be defined in the configuration space framework, including vehicles and other non-robotic 

mechanisms. 

C++ API. Each C-space is a subclass of the configuration space interface class CSpace defined in 

KrisLibrary/planning/CSpace.h. Please see the documentation 

Python API. Each C-space is a subclass of the configuration space interface CSpace defined in klampt.plan.cspace. 

At a minimum, the subclass should set up the following: 

¶ bound : a list of pairs [(a1,b1ύΣΧΣόŀn,bn)] giving an n-dimensional bounding box containing the free space 

¶ eps : a visibility collision checking tolerance, which defines the resolution to which motions are checked 

for collision. 

¶ feasible(x) : returns true if the vector x is in the feasible space. (an alternative to overriding feasible  is 

to call addFeasibilityTest(func,name)  for each constraint test.) 



The feasibility test is an authoritative representation of C-space obstacles, and will be called thousands of times 

during planning. For sampling-based planners to work well, this must be fast (ideally, microseconds). 

To implement non-Euclidean spaces, users may optionally override: 

¶ sample() : returns a new vector x from a superset of the feasible space. If this is not overridden, then 

subclasses should set CSpace.bound  to be a list of pairs defining an axis-aligned bounding box. 

¶ sampleneighborhood(c,r) : returns a new vector x from a neighborhood of c with radius r 

¶ visible(a,b) : returns true if the path between a and b is feasible. If this is not overridden, then paths 

are checked by subdivision, with the collision tolerance CSpace.eps . 

¶ distance(a,b) : return a distance between a and b 

¶ interpolate(a,b,u) : interpolate between a, b with parameter u 

Setting up and invoking motion planners is the same as in the robot-level interface. 

7.3. TIME-OPTIMAL ACCELERATION-BOUNDED TRAJECTORIES 

The result of kinematic planning is a sequence of milestones, which ought to be converted to a time-parameterized 

trajectory to be executed. The standard path controllers (see Section 8.3) do accept milestone lists and will do this 

internally. Occasionally you may want to do this manually, for example, to perform path smoothing before 

execution.  This is currently only supported in the C++ API. 

C++ API. The example program in Examples/dynamicplandemo.cpp demonstrates how to do this (the program 

can be built using the command make DynamicPlanDemo ). 

This functionality is contained within the DynamicPath  class in the Klampt/Modeli ng/DynamicPath.h file, which 

builds on the classes in Klampt/Modeling /ParabolicRamp.h. To shortcut a path, the following procedure is used: 

1. Set the velocity and acceleration constraints, and optionally, the joint limits in the DynamicPath .  

2. Call DynamicPat h. SetMilestones() . The trajectory will now interpolate linearly and start and stop at 

each milestone. 

3. Subclass the FeasibilityCheckerBase  class with the appropriate kinematic constraint checkers 

overriding ConfigFeasible  and SegmentFeasible . Construct an instance of this checker. 

4. Construct a RampFeasibilityChecker  with a pointer to the FeasibilityCheckerBase  instance and an 

appropriate checking resolution. 

5. Call DynamicPath.Shortcut(N,checker)  where N is the desired number of shortcuts. 

The resulting trajectory will be smoothed, will satisfy velocity and acceleration bounds, and will be feasible. 

Warning: free-rotational joints (robots with free-floating bases) will not be interpolated correctly because this 

method assumes a Cartesian configuration space. Spin joints are also not handled correctly at step 3 but they can 

be handled by replacing step 5 with the WrappedShortcut  method. 

For more details, please see: K. Hauser and V. Ng-Thow-Hing. Fast Smoothing of Manipulator Trajectories using 

Optimal Bounded-Acceleration Shortcuts. In proceedings of IEEE Int'l Conference on Robotics and Automation 

(ICRA), 2010. 



7.4. INTERPOLATION AND TIME-OPTIMIZATION WITH CLOSED-CHAIN CONSTRAINTS 

(C++ ONLY) 

Several routines in Klampt/Planning/RobotTimeScaling.h are used to interpolate paths under closed chain 

constraints. There is also functionality for converting paths to minimum-time, dynamically-feasible trajectories 

using a time-scaling method. The TrajOpt program will do this from the command line. 

The suggested method for doing so is to use a MultiPath  with the desired constraints in each section, and to input 

the control points as milestones. DiscretizeConstrainedMultiPath  can be used to produce a new path that 

interpolates the milestones, but with a finer-grained set of constraint-satisfying configurations. 

EvaluateMultiPath  interpolates a configuration along the path that satisfies the constraints. 

GenerateAndTimeOptimizeMultiPath  does the same as Discr etizeConstrainedMultiPath  except that the timing 

of the configurations is optimized as well. 

Each method takes a resolution parameter that describes how finely the path should be discretized. In general, 

interpolation is slower with finer discretizations. 

See the following reference for more details: K. Hauser. Fast Interpolation and Time-Optimization on Implicit 

Contact Submanifolds. Robotics: Science and Systems, 2013.  

7.5. RANDOMIZED PLANNING WITH CLOSED-CHAIN CONSTRAINTS 

YƭŀƳǇΩǘ Ƙŀǎ ǳǘƛƭƛǘƛŜǎ ǘƻ plan for collision-free Ƴƻǘƛƻƴǎ ǘƘŀǘ ǎŀǘƛǎŦȅ ŎƭƻǎŜŘ ŎƘŀƛƴ ŎƻƴǎǘǊŀƛƴǘǎ όŜΦƎΦΣ ǘƘŀǘ ŀ ǊƻōƻǘΩǎ 

hands and feet touch a support surface). 

C++ API. The ContactCSpace  class (Klampt/Planning/ContactCSpace.h) should be used in the place of 

SingleRobotCSpace . Fill out the contactIK  member, optionally using the Add* ()  convenience routines. The 

kinematic planning approach can then be used as usual. Example code is given in Examples/contactplan.cpp (the 

application can be created via the command make ContactPlan ). 

Note that the milestones outputted by the planner should NOT be interpolated linearly because the motion lies on 

a lower-dimensional, nonlinear constraint manifold in configuration space. Rather, the path should be discretized 

finely on the constraint manifold before sending it to any function that assumes a configuration-space path. There 

are two methods for doing so: 1) using MilestonePath. Eval()  with a fine discretization, which uses the internal 

ContactCSpace::Interpolate  method, or 2) construct an interpolating path via the classes in 

Klampt/Planning/ RobotConstrainedInterpolator.h. This latter approach guarantees that the resulting path is 

sufficiently close to the constraint manifold when interpolated linearly. 

To use RobotConstrainedInterpolator , construct an instance with the robot and its IK constraints. Then, calling 

RobotConstrainedInterpolator.Make()  with two consecutive configurations will produce a list of finely-

discretized milestones up to the tolerance RobotConstrainedInterpolator.xtol . Alternatively, the 

RobotSmoothConstrainedInterpolator  class and the MultiSmoothInterpolate  function can be used to construct 

a smoothed cubic path. 

Python API. The planToX  functions in klampt.plan.robotplanning accept arbitrary inverse kinematics constraints 

using the equalityConstraints  keyword argument.  Internally, these functions use the ContactCSpace  class 

defined in klampt.plan.robotcspace. As in the C++ API, the plans are milestone lists, which should not be 



interpolated linearly in joint space.  Rather, the space. discretizePath(path,epsilon=1e - 2)  convenience 

function is provided to calculate an approximate piecewise-linear joint space path from the milestone path. 

7.6. TIME-SCALING OPTIMIZATION (C++ ONLY) 

The TimeOptimizePath  and GenerateAndTimeOptimizeMultiPath  functions in 

Klampt/Planning/RobotTimeScaling.h ǇŜǊŦƻǊƳ ǘƛƳŜ ƻǇǘƛƳƛȊŀǘƛƻƴ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ŀ ǊƻōƻǘΩǎ ǾŜƭƻŎƛǘȅ ŀƴŘ 

acceleration bounds. TimeOptimizePath  takes a piecewise linear trajectory as input, interpolates it via a cubic 

spline, and then generates keyframes of time-optimized trajectory. GenerateAndTimeOptimizeMultiPath  does the 

same except that it takes MultiPath s as input and output, and the constraints of the multipath may be first 

interpolated at a finer resolution before time-optimization is performed. 

7.7. REAL-TIME MOTION PLANNING (C++ ONLY) 

Real-time motion planning allows a robot to plan while executing a previously planned path. This allows the robot 

to avoid moving obstacles, improve path quality without large delays, and change its goals in real-time. It is critical 

to use a system architecture that tightly controls the synchronization between planning and execution; the planner 

must not spend more than a predetermined amount of time in computation before delivering the updated result, 

or else the path could change in an uncontrolled manner with catastrophic consequences. Moreover, such a 

method must be robust to unpredictable communication delays. 

YƭŀƳǇǘΩǎ ǊŜŀƭ-time motion planning routines are built to handle these issues gracefully, and furthermore have the 

following theoretical guarantees 

-  The executed path is guaranteed to be continuous and within joint, velocity, and acceleration limits 

-  In a static environment the path is guaranteed to be collision free 

-  Any goal will eventually be reached given sufficient time (in wall clock time) 

Real-time planning is only supported in the C++ API. The main files containing this functionality are the 

RealTimePlannerBase  base class in Klampt/Planning/RealTimePlanner.h and the subclass 

RealTimeTreePlanner  in Klampt/Planning/RealTimeRRTPlanner.h. A complete implementation including 

communication with the User Interface Thread/Execution Thread is given in the MTPlannerCommandInterface  class 

in Klampt/Interface/UserInterface.h .  

Conceptually, the main requirement is that the Execution Thread and Planning Thread must be synchronized via a 

motion queue. The motion queue is a modifiable trajectory y(t) that is steadily executed by the Execution Thread. 

The Planning Thread is allowed to edit the motion queue asynchronously by splicing in a changed path, which 

modifies the motion queue after at a given time. Right now, the motion queue must be a DynamicPath (in future 

implementations this requirement may be relaxed). Splices are specified on an absolute clock, because when a 

splice is made at time ts, the planner must ensure that the old motion queue and the new suffix match at the same 

configuration y(ts) and velocity at yΩ(ts).   

The Planning Thread ǎƘƻǳƭŘ ōŜ ƛƴƛǘƛŀƭƛȊŜŘ ǿƛǘƘ ǘƘŜ ǊƻōƻǘΩǎ ƛƴƛǘƛŀƭ ŎƻƴŦƛƎǳǊŀǘƛƻƴ (or path) and its inner loop should 

proceed as follows: 

1. Globally, the plannerΩǎ ƻōƧŜŎǘƛǾŜ ƛǎ ǎŜǘ ǳǎƛƴƎ Reset and a planning cycle is begun at time tp by calling 

PlanUpdate. 

2. The planner determines a split time ts and planning duration dt. It is required that ts > tp + dt. 



3. The planner tries to compute a path starting from y(ts) and yΩόts). If unsuccessful, the planning cycle 

terminates with failure. 

4. Otherwise, the planner requests that the path gets spliced to the motion queue via the 

SendPathCallbackBase  mechanism. The queue has an opportunity to reject the request, such as if it 

arrives after the current execution time or has incorrect configuration or velocity. A rejected splice is 

signaled by returning false to the callback. 

5. Return to step 1. 

The generic SendPathCallbackBase  callback must be subclassed and implemented to make splice requests. In 

practice, properly implementing this callback requires locking and synchronization between threads. Either 1) the 

motion queue must be synchronized, or 2) splice requests are written to the Execution Thread, and a reply is 

written to the Planning Thread (as done in MTPlannerCommandInterface , the  result to SendPathCallbackBase  is 

queried via a polling mechanism). 

A planning cycle can be interrupted with the StopPlanning  method. This is useful to maintain responsiveness to 

changing user input. 

There are two policies for determining the planning duration: constant and adaptive.  When using sampling-based 

planners we recommend using the adaptive time stepping mechanism because it adapts to planning problem 

difficulty. For deterministic planners, a well-chosen constant time step may be more appropriate.  



8. CONTROL 

/ƻƴǘǊƻƭƭŜǊǎ ǇǊƻǾƛŘŜ ǘƘŜ άƎƭǳŜέ ōŜǘǿŜŜƴ ǘƘŜ ǇƘȅǎƛŎŀƭ ǊƻōƻǘΩs actuators, sensors, and planners. They are very similar 

to planners in that they generate controls for the robot, but the main difference is that a controller is expected to 

work online and synchronously within a fixed, small time budget. As a result, they can only perform relatively light 

computations. 

8.1. ACTUATORS 

At the lowest level, a robot is controlled by actuators. These receive instructions from the controller and produce 

link torques that are used by the simulator. YƭŀƳǇΩǘ supports three types of actuator: 

¶ Torque control accepts torques and feeds them directly to links. 

¶ PID control accepts a desired joint value and velocity and uses a PID control loop to compute link torques 

servo to the desired position. Gain constants kP, kI, and kD should be tuned for behavior similar to those 

of the physical robot. PID controllers may also accept feedforward torques. 

¶ Locked velocity control drives a link at a fixed velocity. Experimental. (NoǘŜΥ ǘƘƛǎ ƛǎ ŘƛŦŦŜǊŜƴǘ ŦǊƻƳ άǎƻŦǘέ 

velocity control which feeds a piecewise linear path to a PID controller) 

Note that the PID control and locked velocity control loops are performed as fast as possible with the simulation 

time step. This rate is typically faster than that of the robot controller. Hence a PID controlled actuator typically 

performs better (rejects disturbances faster, is less prone to instability) than a torque controlled actuator with a 

simulated PID loop at the controller level. 

Important: When using YƭŀƳǇΩǘ to prototype behaviors for a physical robot, the simulated actuators should be 

ŎŀƭƛōǊŀǘŜŘ ǘƻ ƳƛƳƛŎ ǘƘŜ ǊƻōƻǘΩǎ true low-level motor behavior as closely as possible. It is also the responsibility of 

the user to ensure that the controller uses the simulated actuators in the same fashion as it would use the ǊƻōƻǘΩǎ 

physical actuators. For example, for a PID controlled robot with no feedforward torque capabilities, it would not be 

appropriate to use torque control in YƭŀƳǇΩǘ. If a robot does not allow changing the PID gains, then it would not be 

appropriate to do so in YƭŀƳǇΩǘ. YƭŀƳǇΩǘ will not automatically configure your controller for compatibility with the 

physical actuators, nor will it complain if such errors are made. 

C++ API. The RobotMotorCommand  (Klampt/Control /Command.h) structure contains a list of ActuatorCommands  

that are then processed by the simulator. 

8.2. SENSORS 

YƭŀƳǇΩǘ can emulate a handful of sensors typically found on robots. !ǘ ǘƘŜ ǳǎŜǊΩǎ ƭŜǾŜƭ ƻŦ ŀōǎǘǊŀŎǘƛƻƴ, they 

generically provide streaming numerical-valued measurements. It is up to the user to process these raw 

measurements into meaningful information.  

The following sensors are natively supported: 

¶ JointPositionSensor : Standard joint encoders. 

¶ Joint Velocity Sensor : Velocity sensors. Here velocities are treated raw measurements, not differenced 

from a position encoder, and hence they are rarely found in real life. However, these will be good 

approximations of differenced velocity estimates from high-rate encoders. 



¶ DriverTorqueSensor : TƻǊǉǳŜǎ ŦŜŘ ōŀŎƪ ŦǊƻƳ ŀ ǊƻōƻǘΩǎ Ƴotors. 

¶ ContactSensor : A contact switch/sensor defined over a rectangular patch. 

¶ ForceTorqueSensor Υ ! ŦƻǊŎŜκǘƻǊǉǳŜ ǎŜƴǎƻǊ ŀǘ ŀ ǊƻōƻǘΩǎ ƧƻƛƴǘΦ Can be configured to report values from 1 to 

6DOF. 

¶ Accelerometer : An accelerometer. Can be configured to report values from 1 to 3 channels. 

¶ TiltSensor : A tilt sensor. Can be configured to report values from 1 to 2 axes, and optionally tilt rates. 

¶ GyroSensor : A gyroscope. Can be configured to report accelerations, velocities, or absolute rotations. 

¶ IMUSensor : An inertial measurement unit that uses an accelerometer and/or gyroscope to provide 

ŜǎǘƛƳŀǘŜǎ ƻŦ ŀ ƭƛƴƪΩǎ ǘǊŀƴǎŦƻǊƳŀǘƛƻƴ ŀƴŘ ƛǘǎ ŘŜǊƛǾŀǘƛǾŜǎΦ It will fill in the gaps that are not provided by the 

accelerometer / gyro using either integration or differencing. 

¶ Filter edSensor Υ ! άǾƛǊǘǳŀƭ ǎŜƴǎƻǊέ ǘƘŀǘ ǎƛƳǇƭȅ ŦƛƭǘŜǊǎ ǘƘŜ ƳŜŀǎǳǊŜƳŜƴǘǎ ǇǊƻǾƛŘŜŘ ōȅ ŀƴƻǘƘŜǊ ǎŜƴǎƻǊΦ  

! ǊƻōƻǘΩǎ ǎensors are dynamically configured via an XML tag of the form <sensor s> < TheSensorType  

name=òsome_nameò attr1=òvalueò é /> </sensors> . Each of the attribute/value pairs is fed to the 

ǎŜƴǎƻǊΩǎ SetSetting  method, and details on sensor-specific settings are found in the documentation in 

Control/Sensor.h. 

These XML strings can be inserted into .rob files under a line property sensors [file] , URDF files under the 

<klampt>  element, or world XML files under the <simulation>  and <robot>  elements 

8.3. CONTROLLERS 

The number of ways in which a robot may be controlled is infinite, and can range from extremely simple methods, 

e.g., a linear gain, to extremely complex ones, e.g. an operational space controller or a learned policy. Yet, all 

controllers are structured as a simple callback loop: repeatedly read off sensor data, perform some processing, and 

write motor commands. The implementation of the internal processing is open to the user.  

Default motion queue controller. The default controller for each robot is a 

FeedforwardPolynomial PathController , which simulates typical controllers for industrial robots. This is a 

motion-queued controller with optional feedforward torques.  It supports piecewise linear and piecewise cubic 

interpolation, as well as time-optimal acceleration-bounded trajectories. 

C++ API: Any controller must subclass the RobotController  class (Klampt/Control /Controller.h ) and overload 

the Update  method. The members sensors  and command are available for the subclass to use. The basic control 

loop repeatedly executes: 

1. The RobotSensors *  sensors  structuǊŜ ƛǎ ŦƛƭƭŜŘ ƛƴ ōȅ ǘƘŜ YƭŀƳǇΩǘ ǎƛƳǳƭŀǘƛƻƴ (or physical robot). 

2. The RobotController.Update  method is called.  Here, the controller should fill in the 

Robot Motor Commands* command structure as necessary. 

3. The command ǎǘǊǳŎǘǳǊŜ ƛǎ ǊŜŀŘ ƻŦŦ ōȅ ǘƘŜ YƭŀƳǇΩǘ ǎƛƳǳƭŀǘƛƻƴ όƻǊ ǇƘȅǎƛŎŀƭ ǊƻōƻǘύΦ 

Python API. By default, the SimRobotController  class implements a FeedforwardPolynomial PathController . The 

setMilestone  and addMilestone  methods set and append a new destination milestone to the motion queue, 

respectively.  The klampt.model.trajectory.execute_trajectory  function helps execute trajectories or arising 

from planners. However, this behavior can be overridden using the low-level setPIDCommand  and 

setTorqueCommand  functions. 



To define a custom controller, the user should implement a custom control loop. At every time step, read the 

ǊƻōƻǘΩǎ ǎŜƴǎƻǊǎΣ ŎƻƳǇǳǘŜ ǘƘŜ ŎƻƴǘǊƻƭΣ ŀƴŘ then send the control to the robot via the setPIDCommand  or 

setTorqueCommand  methods. 

(Note: One limitation of the API is that it is impossible to have certain joints controlled by a motion queue, while 

others are controlled by PID commands.) 

Dynamically loadable controllers. Controllers can be dynamically and automatically loaded from world XML files 

via a statement of the form <controller type=òTheController Typeò attr1=òvalueò é /> 

under the <simulation>  and <robot>  elements. The following controllers are supported: 

¶ JointTrackingController (Klampt/Control /JointTrackingController.h): a simple open-loop controller that 

accepts a desired setpoint. 

¶ MilestonePathController (Klampt/Control /PathController.h): an open-loop controller based on a 

DynamicPath  trajectory queue. 

¶ PolynomialPathController (Klampt/Control /PathController.h): an open-loop controller based on a 

PiecewisePolynomialSpline  trajectory queue. Somewhat more flexible than MilestonePathController . 

¶ FeedforwardJointTrackingController (Klampt/Control /FeedforwardController.h ): a controller that 

additionally computes feedforward torques for gravity compensation and acceleration compensation. 

Works properly only with fixed-based robots. Otherwise works exactly like JointTrackingController . 

¶ FeedforwardMilestonePathController: see above. 

¶ FeedforwardPolynomialPathController: see above. 

¶ SerialController (Klampt/Control / SerialController.h): a thin communication layer that serves sensor 

data and accepts commands to/from a client controller through a serial interface.  It listens on the port 

given by the setting servAddr  and sends sensor data at the rate writeRate  (in Hz).  Sensor data and 

commands are converted to/from JSON format, in a form that is compatible with the Python API 

dictionaries used by the klampt.control.BaseController  class (see also 

Klampt/Python/control/controlle r.py). 

New controller types can also be defined for dynamic loading in world XML files using the 

RobotControllerFactory::Register( name,ptr )  function. This hook must be called before the world file is 

loaded. Afterward, the specified controller type will be instantiated whenever the registered type appears in the 

world file. 

Generic external interfaces. Optionally, controllers may expose various configuration settings to be loaded from 

XML files by implementing the * Settings  methods. (These may also be manipulated by GUI programs and higher-

level controllers/planners). They may also accept arbitrary external commands by overloading the * Command* 

methods. 

8.4. STATE ESTIMATION 

Controllers may or may not perform state estimation. If state estimation is performed, it is good practice to define 

the state estimator as independent of the controller, such as via a subclass of RobotStateEstimator . The 

RobotStateEstimator  interface is fairly sparse, but the calling convention helps standardize their use in 

controllers. 



Using state estimators. Controllers should instantiate a state estimator explicitly on construction. Inside the 

Update  callback, the controller should: 

1. Call RobotStateEstimator . ReadSensors (*sensors) , then UpdateModel() to update the ǊƻōƻǘΩǎ ƳƻŘŜƭΦ 

2. Read off the estimated state of the robot model (and potentially other information computed by the state 

estimator, such as uncertainty levels) and compute its command as usual. 

3. Just before returning, call the ReadCommand(*command)  and Advance(dt)  methods on the 

RobotStateEstimator  object. 

A few experimental state estimators are available. OmniscientStateEstimator  gives the entire actual robot state 

to the controller, regardless of the sensors available to the robot. IntegratedStateEstimator  augments 

accelerometers and gyros with an integrator that tries to track true position. These integrators are then merged (in 

a rather simple-minded way) to produce the final model. 

  



9. CONTROLLER INTEGRATION 

YƭŀƳǇΩǘ ǎǳǇǇƻǊǘǎ ŀ ƴǳƳōŜǊ ƻŦ ƳŜŎƘŀƴƛǎƳǎ ŦƻǊ ŎƻƴƴŜŎǘƛƴƎ controllers and simulated robots with external modules. 

!ƴ ŜȄǘŜǊƴŀƭ ŎƻƴǘǊƻƭƭŜǊ Ŏŀƴ ōŜ ŎƻƴƴŜŎǘŜŘ ǘƻ ŀ YƭŀƳǇΩǘ simulated ǊƻōƻǘΣ ƻǊ ŀ YƭŀƳǇΩǘ ŎƻƴǘǊƻƭƭŜǊ Ŏŀƴ ōŜ ŎƻƴƴŜŎǘŜŘ ǘƻ 

a physical robot. 

9.1. CONNECTING AN EXTERNAL CONTROLLER TO A Y[!atΩ¢ SIMULATED ROBOT 

There are three options for doing so (plus a fourth variant): 

1. Direct instantiation in C++. You must define a subclass of RobotController  and perform all necessary 

processing in its Update  ƳŜǘƘƻŘΦ ό¢ƻ ƛƴǘŜƎǊŀǘŜ ǿƛǘƘ {ƛƳ¢Ŝǎǘ ȅƻǳ Ƴǳǎǘ ŜŘƛǘ ŀƴŘ ǊŜŎƻƳǇƛƭŜ YƭŀƳǇΩǘύΦ 

2. Direct instantiation in Python. This can be done manually in the simulation loop by sending PID/ torque 

commands to the simulator, or it can be done by subclassing the controller.py interface used by 

simtest.py as described in Section Error! Reference source not found.. 

3. Socket communication with controller. This interface allows you to communicate directly with SimTest. 

To do so, a robot is given a SerialController  controller, which acts as a relay to an external client by 

sending sensor data and receiving motor commands over a socket. Data is serialized in JSON format. 

4. (another instance of method 3) ROS joint_trajectory and joint_state messages. These are supported in 

SimTest via a SerialController and the rosserialrelay.py script, or in simtest.py using the roscontroller.py 

script. 

More details for each of the methods are given below. 

Direct instantiation in C++. Once you have created your new controller, a new controller object of your class 

should be sent to the WorldSimulation.SetController()  method when launching your own simulation. Or, the 

controller can be registered using RobotControllerFactory::Register  as described in Section 8.3, and its type 

can be specified in the world XML file. 

Direct instantiation in Python. See Section Error! Reference source not found. for details. 

Socket communication with controller. This procedure consists of first setting a robot to use a SerialController 

controller, and writing a binding for your external controller to connect to the server socket, and process messages 

using the controller communication protocol (CCP) covered in Section 9.2. 



 

As an example, consider an external Python controller. 

1. Run ./SimTest data/tx90serialinput.xml  in one window. The SerialController controller in SimTest 

will listen for clients to connect to localhost:3456 (the port is specified in the world XML file).  Once a 

client connects, it will write sensor messages to the socket at a fixed rate and then receive command 

messages from the socket as they are generated. 

2. Run python Python/control/serialcontroller.py  data/motions/tx90sw ay.txt  in another window. 

This script connects as a client and begins receiving sensor messages over the socket, processes them (in 

this case using a trajectory controller), and sends the resulting command messages back over the socket. 

ROS communication with controller. The rosserialrelay.py script runs a daemon to relay ROS messages to a 

SerialController. It reads position, velocity, and/or feedforward torque commands from the 

/[robot_name]/joint_trajectory  ROS topic and writes sensed joint states to the /[robot_name]/joint_states  

ROS topic. It directly translates these items to a SerialController on localhost:3456 by default.  As usual, you may 

ǎǘŀǊǘ ǳǇ ǘƘŜ {ŜǊƛŀƭ/ƻƴǘǊƻƭƭŜǊ ǘƘǊƻǳƎƘ {ƛƳ¢ŜǎǘΩǎ /ƻƴǘǊƻƭƭŜǊ ǿƛƴŘƻǿΣ ƻǊ ōȅ ǎǇŜŎƛŦȅƛƴƎ ŀ {ŜǊƛŀƭ/ƻƴǘǊƻƭƭŜǊ ŀǎ ŀ ǊƻōƻǘΩǎ 

controller via the world XML file. 

A more direct method for use in the simtest.py controller interface is provided by the roscontroller.py script. It 

functions nearly identically to rosserialrelay.py, but without the need to communicate over a socket or to edit 

XML files to set up the SerialController instance. 

Note that in both cases, you must build the klampt  ROS package (a Catkin workspace has already been provided 

for you in the Python/Control/ klampt_catkin folder), and use rosrun  to start the scripts. Please refer to the 

ROS documentation for details. 

External controller 

JSON controller 
command 
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Figure 10. Connecting an external controller to a simulated robot via a socket communication 

protocol with a SerialController controller. 



 

9.2. CONTROLLER COMMUNICATION PROTOCOL (CCP) 

A sensor message is a structure with the following elements: 

¶ t : the current simulation time. 

¶ dt : the controller time step. 

¶ qΥ ǘƘŜ ǊƻōƻǘΩǎ ŎǳǊǊŜƴǘ ǎŜƴǎŜŘ ŎƻƴŦƛƎǳǊŀǘƛƻƴ 

¶ dqΥ ǘƘŜ ǊƻōƻǘΩǎ ŎǳǊǊŜƴǘ ǎŜƴǎŜŘ ǾŜƭƻŎƛǘȅ 

¶ qcmd: ǘƘŜ ǊƻōƻǘΩǎ ŎǳǊǊŜƴǘ ŎƻƳƳŀƴŘŜŘ ŎƻƴŦƛƎǳǊŀǘƛƻƴ 

¶ dqcmd: ǘƘŜ ǊƻōƻǘΩǎ ŎǳǊǊŜƴǘ ŎƻƳƳŀƴŘŜŘ ŎƻƴŦƛƎǳǊŀǘƛƻƴ 

¶ The names of each sensors in the simulated robot controller, mapped to a list of its measurements. 

A command message is a structure which contains one of the following combinations of keys, signifying which type 

of joint control should be used: 

¶ qcmd: use PI control. 

¶ qcmd and dqcmd: use PID control. 

¶ qcmd, dqcmd, and torquecmd: use PID control with feedforward torques. 

¶ dqcmd and tcmd : perform velocity control with the given actuator velocities, executed for time tcmd . 

¶ torquecmd : use torque control. 

Each command key (except tcmd ) must be associated with a list of driver values.  Note that these are driver values 

rather than configuration values; as a result the controller must be aware of which drivers are present in the .rob 

file (as well as their ordering). 
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Figure 11. Connecting an external controller to a simulated robot via ROS. 



CCP messages are serialized in JSON format for socket communication with a SerialController, or as Python 

dictionaries as used in simtest.py.  

9.3. /hbb9/¢LbD ! Y[!atΩ¢ CONTROLLER TO A PHYSICAL ROBOT 

To connect a YƭŀƳǇΩǘ controller to a physical robot, a wrapper around the control loop should repeatedly fill in the 

ŎƻƴǘǊƻƭƭŜǊΩǎ ǎŜƴǎƻǊ Řŀǘŀ ŦǊƻm the physical data, and write the actuator commands to the physical motors. 

The standard interface is given in the ControlledRobot  base class in Klampt/Control/Co ntrolledRobot.h. Your 

subclass should override the Init , ReadSensorData , and WriteCommandData  methods to provide whatever code is 

necessary to communicate with your robot. See Examples/cartpole.cpp for an example. 

 

9.4. CONNECTIbD ! Y[!atΩ¢ t[!bb9w TO A CONTROLLER 

A planner can communicate asynchronously with a controller in real-time using several methods. The general 

technique is to instantiate a planning thread that sends / receives information with the controller whenever 

planning is completed.  

As an example, consider the real-time planning classes in Planning/RealTimePlanner.h and their interfaces in 

Interface/UserInterface.h. The real time planners send trajectory information to the controller via a 

MotionQueueInterface , which just relays information to the PolynomialPathController  in the simulation.  

[The reason why the interface is used rather than communicating directly with a PolynomialPathController  is 

that it is possible to implement a MotionQueueInterface  to send trajectory data to the robot directly. The real-

time planning demos produced by the IML on the physical TX90L robot use a MotionQueueInterface  that 
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communicates with the real controller over Ethernet via a simple serial API. This approach often saves bandwidth 

over implementing a ControlledRobot  subclass.] 

  



10. C++ PROGRAMMING 

YƭŀƳǇΩǘ is written in C++, and using C++ will give you full access to its functionality. But, it does require comfort 

with large code bases and moderate-to-advanced C++ programming abilities. 

Here are some conventions and suggestions for programming C++ apps that use YƭŀƳǇΩǘ. 

¶ Use a debugger (e.g., GDB) to debug crashes. 

¶ Use STL and smart pointers (KrisLibrary/utils/SmartPointer.h ) rather than managing memory yourself. 

¶ KrisLibrary contains a lot of functionality, including linear algebra routines, 3D math, optimization, 

geometric routines, OpenGL drawing, statistics, and graph structures. Browse KrisLibrary before you 

reinvent the wheel. 

¶ Avoid hard-coding. A much better practice is to place all settings into a class (e.g., with a 

robotLeftHandXOffsetAmount  member) that gets initialized ǘƻ ŀ ŘŜŦŀǳƭǘ ǾŀƭǳŜ ƛƴ ǘƘŜ ŎƭŀǎǎΩ ŎƻƴǎǘǊǳŎǘƻǊΦ If 

you need to hard-code values, define them as const static  variables or #defines  at the top of your file. 

Name them descriptively, e.g., gRobotLeftHand XOffsetAmount  is much better than shift  or (God forbid) 

that Stupid Variable , when you come back to the file a month from now.  

¶ The main() function in Klampt/Main /simtest.cpp is a good reference for setting up a world and a 

simulation from command-line arguments. 

11. PYTHON PROGRAMMING 

The Klampt/Python  folder contains a Python API for YƭŀƳǇΩǘ that is much cleaner and easier to work with than 

the C++ API. For beginners or for rapid prototyping, this is the best API to use. However, it does not contain all of 

the functionality of the C++ API. 

Missing features include:  

¶ Advanced IK constraint types 

¶ Trajectory optimization 

¶ Some contact processing algorithms 

¶ Robot reachability bound determination 

¶ Advanced force/torque balance solvers 

¶ Advanced motion planners (optimal planning with custom objective functions, kinodynamic planning, etc) 

¶ 5ƛǊŜŎǘ ŀŎŎŜǎǎ ǘƻ ŀ ǊƻōƻǘΩǎ ǘǊŀƧŜŎǘƻǊȅ ǉǳŜǳŜΦ 

11.1. THE KLAMPT MODULE 

¢ƘŜ ŎƻǊŜ ƳƻŘŜƭƛƴƎ ŀƴŘ ǎƛƳǳƭŀǘƛƻƴ YƭŀƳǇΩǘ ŦǳƴŎǘƛƻƴŀƭƛǘȅ ƛǎ ŦƻǳƴŘ ƛƴ ǘƘŜ klampt module, which automatically 

imports several classes that wrap C++ functionality via SWIG. Users will typically load a WorldModel , construct a 

Simulator , and implement a robot controller by interacting with the SimRobotController . They may also wish to 

use the RobotModel  to compute forward kinematics and dynamics.  

It should be noted that the documentation of these basic classes are found under the klampt.robotsim 

submodule. Their online documentation may also look somewhat strange for Python users, having been converted 

from C++ comments via SWIG. 



Other native Python modules exist for a whole host of other functions, such as computing IK solutions via the 

klampt.model.ik  module, or do other kinds of planning tasks via klampt.plan.robotplanning module.  

11.2. SUB-MODULES 

Sub-modules of klampt include math, model, io, plan, sim, and vis. Sub-modules not discussed elsewhere are as 

follows: 

¶ model.cartesian_trajectory: reliable Cartesian interpolation functions between arbitrary task space 

points. Also defines a ŎƻƴǾŜƴƛŜƴǘ άōǳƳǇέ ŦǳƴŎǘƛƻƴ ǘƘŀǘ ƳƻŘƛŦȅ Ƨƻƛƴǘ-space paths to achieve a task-space 

displacement. 

¶ model.collide: defines a WorldCollider  class that enables querying the collision status of the world and 

subsets of bodies in the world.  

¶ model.config: a uniform interface for determining a flattened list of floats describing the configuration of 

a world entity, a mathematical object, or an IK goal. 

¶ model.contact: allows querying contact maps from a simulator and computing wrench matrices, and 

equilibrium testing. 

¶ model.coordinates: a coordinate transform manager, similar to the tf module in ROS, that lets you attach 

points / vectors to frames and determine relative or world coordinates. 

¶ model.hold.py: defines a Hold  class and writes / reads holds to / from disk. 

¶ model.ik : convenience routines for setting up and solving IK constraints. We do not yet allow solving 

across multiple robots and objects but this functionality may be supported in the future. 

¶ model.map: convenient object-oriented interface for accessing worlds, robots, objects, links, etc. For 

example, you can write 

wm = map.map(world)  

wm.robots[0].links[4].transform  

 instead of 

world.robot(0).getLink(4).getTransform().  

Most notably used in the sim.batch module. 

¶ model.sensing: functions for processing simulated sensor data. 

¶ model.subrobot: a class that is RobotModel -like but only modifies selected degrees of freedom of the 

robot (e.g., an arm, a leg). Many klampt module functions accept SubRobotModels  in the place of 

RobotModels . 

¶ model.types: ǊŜǘǊƛŜǾƛƴƎ ǘƘŜ ǊŜǎƻǳǊŎŜ ƳŀƴŀƎŜǊ ǘȅǇŜ ǎǘǊƛƴƎ ŦƻǊ ǾŀǊƛƻǳǎ YƭŀƳǇΩǘ ƻōƧŜŎǘǎΦ 

¶ io.loading: ŦǳƴŎǘƛƻƴǎ ŦƻǊ ƭƻŀŘƛƴƎκǎŀǾƛƴƎ YƭŀƳǇΩǘ ƻōƧŜŎǘǎ ǘƻ ǎǘǊƛƴƎǎ and/or disk in both native format and 

JSON formats. 

¶ io.resource: functions ŦƻǊ ƭƻŀŘƛƴƎκǎŀǾƛƴƎκŜŘƛǘƛƴƎ YƭŀƳǇΩǘ resources. 

¶ plan.cspaceutils contains helpers for constructing composite CSpaces  and slices of CSpaces . 

¶ sim.batch: functions for batch Monte-Carlo simulation of many simulation initial conditions. 

¶ sim.settle: convenience functions to let objects fall under gravity and extract their equilibrium 

configurations. 

¶ sim.simlog: simulation logging classes (used in SimpleSimulator) 



¶ sim.simulation: a more full-featured simulation class than standard Simulation. Defines sensor and 

actuator emulators, sub-step force appliers, etc. 

The klampt module does not (yet) contain interfaces to trajectory optimization and state estimation. 

11.3. VISUALIZATION 

YƭŀƳǇΩǘ ǎǳǇǇƻǊǘǎ ǘǿƻ ŦǊŀƳŜǿƻǊƪǎ ŦƻǊ ǇǊƻŘǳŎing interactive visualizations: 

¶ Method 1: use the klampt.vis scene manager. 

¶ Method 2: overload GLPluginInterface and customize the event handling and drawing routines.  

Method 1 is much easier to set up, and is more intuitive for users who may be unfamiliar with the event-driven 

paradigm used in GUI programming. Using the scene manager, GUI windows pop up in a separate visualization 

thread, and the main thread can add and remove items to the scene manager. Simple functions are available to 

build multi-viewport GUIs, to customize appearances, control animations, and other visualization functions. For 

more information see the documentation of klampt.vis.visualization, and the example code in 

Klampt/Python / demos/vistemplate.py.  

In Method 2, users will need to override the event handling functions to draw, process mouse and keyboard input, 

etc. ¦ǎŜǊǎ ŀǊŜ ŀƭǎƻ ǿŜƭŎƻƳŜ ǘƻ ǳǎŜ YƭŀƳǇΩǘ ƻōƧŜŎǘ hǇŜƴD[ Ŏŀƭƭǎ ƛƴ ǘƘŜƛǊ ƻǿƴ ŦǊŀƳŜǿƻǊƪǎΦ CƻǊ ƳƻǊŜ ƛƴŦƻǊƳŀǘƛƻƴΣ 

see the documentation of klampt.vis.glinterface, and the simple example file Klampt/Python / demos/gltest.py. 

A hybrid of Method 1 and Method 2 is also available in Klampt/Python/demos/visplugin.py . This hybrid 

approach is primarily used to customize how the scene manager responds to user input. 

11.4. UTILITIES AND DEMOS 

The Python/ utils  and Python/demos folders contain a few example utilities and programs that can be built upon 

to start getting a flavor of programming YƭŀƳǇΩǘ applications in Python. 

¶ demos/gltest.py: a simple simulation with force sensor output. 

¶ demos/gltemplate.py: a simulation with GUI hooks and mouse-clicking capabilities. 

¶ demos/kbdrive.py: drive a simulated robot around using the keyboard.  The first 10 joints can be driven 

Ǿƛŀ ŀ ǇƻǎƛǘƛǾŜ ǾŜƭƻŎƛǘȅ ǿƛǘƘ ǘƘŜ ǘƻǇ Ǌƻǿ ƻŦ ƪŜȅǎ мΣнΣΧΣл ŀƴŘ ŀ ƴŜƎŀǘƛǾŜ ǾŜƭƻŎƛǘȅ ǿƛǘƘ ǘƘŜ ǎŜŎƻƴŘ Ǌƻǿ ƻŦ 

ƪŜȅǎ ǉΣǿΣΧΣǇΦ 

¶ demos/robotiq.py : modeling and simulating the RobotiQ 3-finger Adaptive Gripper. This code emulates 

the underactuated transmission mechanism of each finger. 

¶ demos/robotiqtest.py : performs a simulation of the RobotiQ gripper closing and opening on an object. 

¶ demos/simtest.py: an imitation of SimTest program programmed entirely in Python, and an entry point 

to fast prototyping of controllers using the Python API. 

¶ demos/sphero.py: simulates the Sphero 2.0 robot driving around. 

¶ demos/vistemplate.py: demonstrates how to use the basic interface to the visualization module. 

¶ demos/visplugin.py: demonstrates how to develop plugins for the visualization module. 

¶ utils/config_to_driver_trajectory.py: converts a linear path from configuration space (# of DOF) to driver 

space (# of actuators). 



¶ utils/driver_to_config_trajectory.py: converts a linear path from driver space (# of actuators) to 

configuration space (# of DOF). 

¶ utils/discretize_path.py: splits a linear path into a fixed time-domain discretization. 

¶ utils/make_thumbnails.py: generates thumbnails of a folder full of world, robot, object files, etc.  

¶ utils/ multipath_to_path.py: simple script to convert a MultiPath  to a timed milestone trajectory. 

Parameters at the top of the script govern the speed of the trajectory. 

¶ utils/ multipath_to_timed_multipath.py: simple script to convert a MultiPath  to a timed MultiPath . 

Parameters at the top of the script govern the speed of the trajectory. 

¶ utils/tri2off.py : converts old-style .tri files to .off files. 

Like the compiled SimTest, simtest.py simulates a world file and possibly robot trajectories. The user interface is a 

ǎƛƳǇƭƛŦƛŜŘ {ƛƳ¢ŜǎǘΣ ǿƛǘƘ ΨǎΩ ōŜƎƛƴƴƛƴƎ ǎƛƳǳƭŀǘƛƻƴ ŀƴŘ ΨƳΩ ǎŀǾƛƴƎ ŦǊŀƳŜǎ ǘƻ ŘƛǎƪΦ wƛƎƘǘ-dragging applies spring forces 

to the robot. 

11.5 EXPERIMENTAL CONTROLLER API 

simtest.py also accepts arbitrary feedback controllers given as input. To do so, give it a .py file with a single 

make(robot)  function that returns a controller object.  This object should be an instance of a subclass 

BaseController  in control.controller.  For example, to see a controller that interfaces with ROS, see 

control/roscontroller.py . 

A Python controller is a very simple object with three important methods: 

¶ output(self,**inputs) : given a set of named inputs, produce a dictionary of named outputs.  The 

semantics of the inputs and outputs are defined by the caller.  

¶ advance(self,**inputs) : advance by a single time step, performing any necessary changes to the 

ŎƻƴǘǊƻƭƭŜǊΩǎ ǎǘŀǘŜΦ  Note: output  should NOT change internal state! 

¶ signal(self,type,**input s) : sends some asynchronous signal to the controller.  The usage is caller 

dependent.  (This method is never called directly by simtest.py.) 

For simtest.py, the inputs to output  and advance  will be a sensor message as described in the controller 

communication protocol (CCP) in Section 9.2.  The arguments are Python dictionaries.  simtest.py expects output 

to return a dictionary that represents a command message as described in the CCP. 

Internally the controller can produce arbitrarily complex behavior.  Several common design patterns are 

implemented in control/controller.py : 

¶ TimedControllerSequence : runs a sequence of sub-controllers, switching at predefined times. 

¶ MultiController : runs several sub-controllers in parallel, with the output of one sub-controller cascading 

into the input of another. For example, a state estimator could produce a better state estimate q for 

another controller. 

¶ ComposeController : composes several sub-vectors in the input into a single vector in the output. Most 

often used as the last stage of a MultiController  when several parts of the body are controlled with 

different sub-controllers. 

¶ LinearController : outputs a linear function of some number of inputs. 

¶ LambdaController : outputs f(arg1,é,argk) for any arbitrary Python function f . 



¶ StateMachineController : a base class for a finite state machine controller.  The subclass must determine 

when to transition between sub-controllers. 

¶ TransitionStateMachineController : a finite state machine controller with an explicit matrix of 

transition conditions. 

A trajectory tracking controller is given in control/trajectory_controller.py.  Its make function accepts a robot model 

(optionally None) and a linear path file name. 

A preliminary velocity-based operational space controller is implemented in 

control/OperationalSpaceController.py, but its use is highly experimental at the moment. 

  



12. FREQUENTLY ASKED QUESTIONS (FAQ) 

12.1. SHOULD I LEARN THE PYTHON BINDINGS OR C++? 

This is mostly a matter of preference. Python tends to be cleaner, easier to use, and faster for prototyping. 

However, the Python bindings provide a strict subset of the C++ functionality. 

12.2. HOW DO I SET UP SENSORS IN THE SIMULATOR AND READ THEM? 

Sensors are set up in the property sensors  line of the robot file or world XML file. See Sections  5.13 and 8.2 for 

more details, and see data/robots/huboplus/huboplus_col.rob  and data/ simulation_test_worlds.xml for some 

examples. Sensors can be debugged and drawn in RobotTest. 

 

C++ API. To read sensor data declare a variable vector<double> measurements  and call WorldSimulation. 

controlSimulators[robotIndex].sensors.GetNamedSensor(sensorName) - >GetMeasu rements(measurements );  

 

Python API. To read sensors in Python, call 

Simulator. controller(robotIndex).getNamedSensor(sensorName).getMeasurements() . 

12.3. MY SIMULATOR GOES UNSTABLE AND/ OR CRASHES. HELP! 

There are two reasons that the simulator may go unstable: 1) the simulated robot is controlled in an inherently 

unstable manner, or 2) rigid body simulation artifacts due to poor collision handling or numerical errors. The 

second reason may also cause ODE to crash, typically on Linux systems. In testing we have found that configuring 

ODE with double precision fixes such crashes. 

 

Unstable robot: an unstably controlled robot will oscillate and jitter, and if these oscillations become violent 

enough they may also cause rigid body simulation instability/crashing. If the robot goes unstable, then its PID 

constants and dryFriction /viscousFriction  terms need to be tuned. These values must be set carefully in order 

to avoid oscillation and, ideally should ōŜ ŎŀƭƛōǊŀǘŜŘ ŀƎŀƛƴǎǘ ǘƘŜ ǇƘȅǎƛŎŀƭ ƳƻǘƻǊǎΩ ōŜƘŀǾƛƻǊΦ ¢Ƙƛǎ ƛǎ ŎǳǊǊŜƴǘƭȅ an 

entirely manual process that must be done for every new robot. As a rule of thumb, large PID damping terms are 

usually problematic, and should be emulated as viscous friction. 

 

Collision handling errors: YƭŀƳǇΩǘ uses a contact handling method wherein each mesh is wrapped within a thin 

boundary layer that is used for collision detection. When objects make contact only along their boundary layers, 

the simulation is robust, but if their underlying meshes penetrate one another, then the simulator must fall back to 

less robust contact detection methods. This occurs if objects are moving too quickly or light objects in contact are 

subject to high compressive forces. If this happens, YƭŀƳǇΩǘ will print a warning of the form άODECustomMesh: 

Triangles penetrate margin X, cannot trust contact detectorέ. ¢ƘŜ ǎƛƳǳƭŀǘƻǊ ǎǘŀǘǳǎ ǿƛƭƭ ŀƭǎƻ ǊŜǘǳǊƴ άǳƴǊŜƭƛŀōƭŜΦέ 

 

To avoid penetration, there are two remedies: 1) increase the thickness of the boundary layer, or 2) make the 

boundary layer stiffer. See Section 8 for more details on how to implement these fixes. 

12.4. THE SIMULATOR RUNS SLOWLY. HOW CAN I MAKE IT FASTER? 



Unless you are simulating a huge number of joints, the limiting steps in simulation are usually contact detection 

and calculating the contact response. 

The speed of contact detection is governed by the resolution of the meshes in contact. Simpler meshes will lead to 

faster contact detection. Most 3D modeling packages will provide mesh simplification operators. 

The speed of contact response is governed by the number of contact points retained in the contact handling 

procedure after clustering. The maxContacts  simulation parameter governs the number of clusters and can be 

reduced to achieve a faster simulation. However, setting this value too low will lead to a loss of physical realism. 

12.5. HOW DO I IMPLEMENT A BEHAVIOR SCRIPT? 

Many engineers and students tend to approach robotics ŦǊƻƳ ŀ άǎŎǊƛǇǘƛƴƎέ ŀǇǇǊƻŀŎƘΣ ǿƘŜǊŜōȅ ŀ ŎƻƳǇƭŜȄ ōŜƘŀǾƛƻǊ 

is broken down into a script or state machine of painstakingly hand-tuned, heuristic behaviors. Unlike some other 

ǇŀŎƪŀƎŜǎΣ YƭŀƳǇΩǘ ŘƻŜǎ ƴƻǘ ǘǊȅ ǘƻ ƳŀƪŜ ǎŎǊƛǇǘƛƴƎ ŎƻƴǾŜƴƛŜƴǘΦ ¢Ƙƛǎ ŎƘƻƛŎŜ ǿŀǎ ƳŀŘŜ ŘŜƭƛōŜǊŀǘŜƭȅ ƛƴ ƻǊŘŜǊ ǘƻ 

discourage the use of heuristic behaviors. The philosophy is that hand-tuned behaviors should be rare in intelligent 

robots. However, it is true that scripts / state machines are sometimes the easiest way to accomplish a given 

behavior with the current generation of robot AI tools. 

¢ƻ ƛƳǇƭŜƳŜƴǘ ŀ ōŜƘŀǾƛƻǊ ǎŎǊƛǇǘ ƛƴ YƭŀƳǇΩǘΣ the script should be launched in a separate thread from the execution 

thread. It can then monitor the state of the execution thread (e.g., waiting for a movement to finish) and react 

accordingly. For those new to threading, please see the C++ classes in KrisLibrary/utils/threadutils.h  or the 

Python threading  module for more information. 

To implement a state machine, a controller should manually maintain and simulate its behavior in its feedback 

loop. A framework for such controllers the StateMachineContro ller  class in Python/control/controller.py . 

  



13. RECIPES όIh² 5h LΧΚύ 

13.1. GENERATE A PATH/TRAJECTORY FROM KEYFRAMES 

The easiest way to generate a path by hand is to define keyframes in the RobotPose program.  

The Qt GUI makes it easy: 

¶ Create a Configs resource όŎŀƭƭ ƛǘ άƳƛƭŜǎǘƻƴŜǎέύΦ 

¶ /ǊŜŀǘŜ ŀ /ƻƴŦƛƎ ǊŜǎƻǳǊŎŜ όŎŀƭƭ ƛǘ άƳƛƭŜǎǘƻƴŜмέύ ŀƴŘ ŘǊŀƎ ŀƴŘ ŘǊƻǇ ƛǘ ǳƴŘŜǊ ǘƘŜ άƳƛƭŜǎǘƻƴŜǎέ ǊŜǎƻǳǊŎŜ 

¶ tƻǎŜ ǘƘŜ Ǌƻōƻǘ ŀǎ ŘŜǎƛǊŜŘΣ ŀƴŘ ǿƘƛƭŜ άƳƛƭŜǎǘƻƴŜмέ ƛǎ ǎŜƭŜŎǘŜŘ ŎƭƛŎƪ άCǊƻƳ tƻǎŜǊέ 

¶ Repeat steps 2 and 3 for as many milestones as desired. Use drag and drop to order the milestones as 

necessary. 

¶ όǳƴǘƛƳŜŘ ǇŀǘƘύ ²ƘƛƭŜ ǎŜƭŜŎǘƛƴƎ ǘƘŜ άƳƛƭŜǎǘƻƴŜǎέ ǊŜǎƻǳǊŎŜΣ ŎƭƛŎƪ ǘƘŜ ά/ƻƴǾŜǊǘ ¢ƻΧέ ŘǊƻǇŘƻǿƴ ƳŜƴǳΦ  

Select MultiPath or Linear Path as desired. 

¶ όǘƛƳŜŘ ǇŀǘƘύ ²ƘƛƭŜ ǎŜƭŜŎǘƛƴƎ ǘƘŜ άƳƛƭŜǎǘƻƴŜǎέ ǊŜǎƻǳǊŎŜΣ ŎƭƛŎƪ ǘƘŜ άhǇǘƛƳƛȊŜέ ōǳǘǘƻƴΦ 

¶ Save the resulting new resource. 

It Qt is not available, this can also be done in the GLUI GUI, but with more work. To do so: 

1. ¦ǎŜ ǘƘŜ ǇƻǎŜǊ ǘƻ ǇƻǎŜ ƪŜȅŦǊŀƳŜǎΣ ŀƴŘ ǎŀǾŜ ǘƘŜǎŜ ǘƻ ǘƘŜ wŜǎƻǳǊŎŜ [ƛōǊŀǊȅ ǳǎƛƴƎ ǘƘŜ άtƻǎŜǊ -> LibraǊȅέ 

button. The keyframes will appear as Config ΩǎΦ bŀƳŜ ǘƘŜƳ ŀǇǇǊƻǇǊƛŀǘŜƭȅ όŜΦƎΦΣ ƪŜȅŦǊŀƳŜмΣΧΣ ƪŜȅŦǊŀƳŜbύ 

and save them to disk Ǿƛŀ ǘƘŜ ά{ŀǾŜ CƛƭŜέ ōǳǘǘƻƴ. 

2. Concatenate all the .config files into one .configs file, e.g. using cat keyframe1.config é 

keyframe N.config > keyframes.configs .  

3. Load the .configs file from disk, which gives a new Config Set  resource in the Resource Library. 

4. [optional] Set up any IK constraints in the poser that you wish the path to obey. 

5. (for an untimed path) Click ά/ǊŜŀǘŜ tŀǘƘέ ǘƻ generate a new interpolating path. This will create a new 

Multipath  resource in the Resource Library. 

6. (for a timed path) Click άhǇǘƛƳƛȊŜ tŀǘƘέ ǘƻ ƎŜƴŜǊŀǘŜ ŀ ƴŜǿ interpolating trajectory.  

7. Name the Multipath and save it to disk. 

8. [optional] If you prefer a linear path, you Ƴŀȅ ǎŜƭŜŎǘ ǘƘŜ aǳƭǘƛǇŀǘƘΣ ŎƭƛŎƪ ά/ƻƴǾŜǊǘέ ŀƴŘ ǘȅǇŜ ƛƴ 

ά[ƛƴŜŀǊtŀǘƘέ ǿƘŜƴ ǇǊƻƳǇǘŜŘ ƛƴ ǘƘŜ ŎƻƳƳŀƴŘ ƭƛƴŜΦ 

13.2. ANIMATE A VIDEO OF A PATH/TRAJECTORY 

Qt GUI. In RobotPose, paths/trajectories can be played when selected in the Resource Library using the media 

controls in the lower right,. Run ñ./RobotPose [world file] [path file]ò and select the path. 

¦ƴŎƘŜŎƪ ǘƘŜ ά5Ǌŀǿ ƎŜƻƳŜǘǊȅέ ōǳǘǘƻƴ ƻǊ ƳƻǾŜ ǘƘŜ ǇƻǎŜǊ Ǌƻōƻǘ ŀǿŀȅΣ ǘƘŜƴ ŎƭƛŎƪ ǘƘŜ wŜŎƻǊŘ ōǳǘǘƻƴ όǊŜŘ Řƻǘύ ǘƻ 

begin saving PPM screenshots to disk. These files will be processed into a video file using a utility like ffmpeg once 

recording is stopped. 

Note: for best results with your video encoder, you may have to set the frame size manually to a standard size 

using the Camera menu. 

GLUT GUI. In RobotPose, paths/trajectories will be automatically animated when selected in the Resource Library. 

Run ñ./RobotPose [world file] [path file]ò and select the path. ¦ƴŎƘŜŎƪ ǘƘŜ ά5Ǌŀǿ ƎŜƻƳŜǘǊȅέ 



ōǳǘǘƻƴ ƻǊ ƳƻǾŜ ǘƘŜ ǇƻǎŜǊ Ǌƻōƻǘ ŀǿŀȅΣ ǘƘŜƴ ŎƭƛŎƪ ǘƘŜ ά{ŀǾŜ aƻǾƛŜέ ōǳǘǘƻƴ to begin saving PPM screenshots to disk. 

These files can then be processed into a video file using a utility like ffmpeg. 

Note: to change the default movie size in RobotPose/SimTest, edit the movieWidth and movieHeight  elements of 

robotpose.settings / simtest.settings. 

Python API. The Python/demos/simtest.py  program uses the GLSimulationPlugin  visualization plugin, which 

ǎǘŀǊǘ ǎŀǾƛƴƎ ŦǊŀƳŜǎ ŦƻǊ ŀ ƳƻǾƛŜ ōȅ ǇǊŜǎǎƛƴƎ ΨƳΩΦ CƻǊ ƪƛƴŜƳŀǘƛŎ ǎƛƳǳƭŀǘƛƻƴǎΣ ȅƻǳ must manually interpolate and save 

image files to disk. The GLProgram  class in the klampt.vis.glprogram module has a save_screen  method that uses 

the Python Imaging Library to save the current OpenGL view to disk. See Python/ demos/gltemplate.py for an 

example. 

13.3. SIMULATE THE EXECUTION OF A KEYFRAME PATH 

In SimTest, run ñ./SimTest [world file] ïconfig [start config  file ]  ïmilestones 

[milestone path file] ò. A milestone path file consists of a list of T configuration / velocity pairs: 

b ǉмώлϐ Χ ǉbώлϐ b Ǿмώлϐ Χ Ǿbώлϐ 

Χ 

b ǉмώ¢ϐ Χ ǉbώ¢ϐ b Ǿмώ¢ϐ Χ Ǿbώ¢ϐ 

To start and stop at each keyframe, set the velocities to zero. 

Python API. Set up a simulator, then run: 

for q in path:  

sim. getController (0).add Milestone(q)  

This will start and stop at each keyframe. If keyframe velocities are given, run: 

for (q,v) in path:  

sim. getController ( 0).add Milestone(q,v)  

13.4. SIMULATE THE EXECUTION OF A TRAJECTORY 

In SimTest, run ñ./SimTest [world file] ïconfig [start config  file ] ïpath 

[trajectory file]ò. 

Tips: 

¶ For the most precise control over the trajectory, use a Linear Path file or a timed MultiPath. Otherwise, 

SimTest will do some processing to assign times and this may not generate the desired results. The 

Python/ utils/ multipath_to_timed_multipath.py script can be used to generate timing using a 

speedup/slowdown heuristic. 

¶ To easily extract the start configuration from a MultiPath, run ñpython Python/multipath.py ï

s [trajectory file] > start.configò. 

Python API. In Python/demos/ simtest.py, run ñ./simtest.py [world file]  [trajectory file] ò. 



Manual operation: Load a Trajectory  object (see klampt.model.trajectory ). During the control loop, read the 

simulation time (sim.getTime() ), look up the configuration/velocity q/dq of the trajectory at that time using 

(q,dq)=(traj.eval(t),traj.deriv(t)) , and then call sim.getController(0).setPIDCom mand(q,dq) .  

You may also call execute_trajectory in klampt.model.trajectory, or use the TrajectoryController  class in 

control/trajectory_controller.py . 

13.5. IMPLEMENT A CUSTOM CONTROLLER 

C++ API.  

1. Create a new subclass of RobotController  and override, at a minimum, the Type  method, which provides 

a name for the controller, and the Update  method, which reads from the sensors  member and writes to 

the command member. 

2. Add your controller to the default controller factory by adding the line 

RobotControllerFactory::Register(new MyController(robot)) in the 

RobotControllerFactory::RegisterDefault  method in Control/Controller.cpp . 

3. Recompile SimTest. 

4. bƻǿ ȅƻǳ Ŏŀƴ ǎŜǘ ǘƘŜ ǊƻōƻǘΩǎ ŎƻƴǘǊƻƭƭŜǊ ƛƴ ǘƘŜ ǿƻǊƭŘ ·a[ ŦƛƭŜ ōȅ ǎŜǘǘƛƴƎ ǘƘŜ ǘŀƎ 

<simulation><robot><controller ty pe=" [string returned by MyController ::Type()] " /> . 

Python API. See the Python/ demos/gltemplate.py file for an empty method control_loop  that provides a hook 

that gets called every dt  seconds and should be used for interacting with the controller. 

Alternatively, if you wish to follow the standardized control API in the Python/control  module, please see Section 

11.5. 

13.6. PROCESS CLICKS ON THE ROBOT OR WORLD 

C++ API. The WorldView Widget class in Main/WorldViewProgram.h provides the Hover  method to determine the 

ŎƭƻǎŜǎǘ ƻōƧŜŎǘ ŀƴŘ Ǌƻōƻǘ ǿƘŜƴ ŎƭƛŎƪŜŘ Ǿƛŀ ǘƘŜ ƳƻǳǎŜΩǎ Ȅ-y position. This must be provided the current OpenGL 

viewport (i.e., the viewport  member of the GLUTNavigationProgram  or  GLUINavigationProgram  classes). 

Python API. The GLPluginInterface  interface class allows users to call the method click_world ,  which returns a 

depth-sorted list of objects ŎƭƛŎƪŜŘ ŀǘ ǘƘŜ ƳƻǳǎŜΩǎ Ȅ-y position.  See Python/demos/gltemplate.py  for an example 

of how to use it. 

  



14. GENERAL RECOMMENDATIONS 

¶ Ask questions and report issues/bugs. This will help us make improvements to YƭŀƳǇΩǘ. If you write a 

piece of code that you think will be useful to others, consider making it a contribution to the library. 

¶ Practice self-documenting code. Name files, functions, classes, and variables descriptively. Comment as 

you go. 

¶ Use visual debugging to debug your algorithms. For example, output intermediate configurations or paths 

to disk and inspect them with the RobotPose program or klampt.io.resource.edit() . 

¶ Think statefully. Decompose your programs into algorithms, state, parameters, and data. State is what the 

algorithm changes during its running. Parameters are values that are given as input to the algorithm when 

it begins (arguments and settings), and they do not change during execution. Data is the knowledge 

available to the algorithm and the information logged as a side effect of its execution. 

¶ When prototyping long action sequences, build in functionality to save and restore the state of your 

system at intermediate points. 

  



15. WISH LIST 

YƭŀƳǇΩǘ is an evolving project and we hope to grow and refine it in the future with the help of others. Future 

development of YƭŀƳǇΩǘ will focus on the following items (in no particular order): 

¶ Monte-Carlo simulation generation and browsing for mechanism design, behavior evaluation, and 

machine learning  

¶ More convenient manipulation planning support  

¶ Convenience routines for easier dynamic motion planning 

¶ Unification of locomotion and manipulation planning 

¶ Specifying and solving optimization and optimal control problems 

¶ State estimators for free-floating robots 

¶ Planning with sliding and rolling contacts  

¶ Rolling friction simulation 

¶ Expansion of the Python API (e.g., trajectory optimization, real-time planning) 

  



16. PAPERS AND PROJECTS USING Y[!atΩ¢ 

¶ TeamHubo in the DARPA Robotics Challenge: http://dasl.mem.drexel.edu/DRC/ 

¶ K. Hauser. Robust Contact Generation for Robot Simulation with Unstructured Meshes. International 

Symposium of Robotics Research, 2013. 

¶ K. Hauser. Fast Interpolation and Time-Optimization on Implicit Contact Submanifolds. Robotics: Science 

and Systems, 2013.  

¶ K. Hauser. On Responsiveness, Safety, and Completeness in Real-Time Motion Planning. Autonomous 

Robots, 32(1):35-48, 2012.  

¶ Y. Zhang, J. Luo, and K. Hauser. Sampling-based Motion Planning with Dynamic Intermediate State 

Objectives: Application to Throwing. In proceedings of IEEE Int'l Conference on Robotics and Automation 

(ICRA), May 2012. 

¶ E. You and K. Hauser. Assisted Teleoperation Strategies for Aggressively Controlling a Robot Arm with 2D 

Input. In proceedings of Robotics: Science and Systems (RSS), Los Angeles, USA, June 2011.  

¶ K. Hauser. Adaptive Time Stepping in Real-Time Motion Planning. In Algorithmic Foundations of Robotics 

IX, Springer Tracts in Advanced Robotics (STAR), Springer Berlin / Heidelberg, vol 68, p215-230, 2010. 

¶ K. Hauser. Recognition, Prediction, and Planning for Assisted Teleoperation with Freeform Tasks. In 

proceedings of Robotics: Science and Systems, July 2012.  

¶ K. Hauser. The Minimum Constraint Removal Problem with Three Robotics Applications. In proceedings of 

Workshop on the Algorithmic Foundations of Robotics, June 2012.  
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